开发者

pytorch如何利用ResNet18进行手写数字识别

开发者 https://www.devze.com 2023-02-03 09:44 出处:网络 作者: 爱听许嵩歌
目录利用ResNet18进行手写数字识别先写resnet18.py再写绘图utils.py最后是主函数mnist_train.py总结利用ResNet18进行手写数字识别
目录
  • 利用ResNet18进行手写数字识别
    • 先写resnet18.py
    • 再写绘图utils.py
    • 最后是主函数mnist_train.py
  • 总结

    利用ResNet18进行手写数字识别

    先写resnet18.py

    代码如下:

    import torch
    from torch import nn
    from torch.nn import functional as F
    
    
    class ResBlk(nn.Module):
      """
      resnet block
      """
    
      def __init__(self, ch_in, ch_out, stride=1):
        """
    
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()
    
        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BATchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)
    
        self.extra = nn.Sequential()
    
        if ch_out != ch_in:
          # [b, ch_in, h, w] => [b, ch_out, h, w]
          self.extra = nn.Sequential(
            nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
            nn.BatchNorm2d(ch_out)
          )
    
      def forward(self, x):
        """
    
        :param x: [b, ch, h, w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
    
        # short cut
        # extra module:[b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add:
        out = self.extra(x) + out
        out = F.relu(out)
    
        return out
    
    
    class ResNet18(nn.Module):
      def __init__(self):
        super(ResNet18, self).__init__()
    
        self.conv1 = nn.Sequential(
          nn.Conv2d(1, 64, kernel_size=3, stride=3, padding=0),
          nn.BatchNorm2d(64)
        )
        # followed 4 blocks
    
        # [b, 64, h, w] => [b, 128, h, w]
        self.blk1 = ResBlk(64, 128, stride=2)
    
        # [b, 128, h, w] => [b, 256, h, w]
        self.blk2 = ResBlk(128, 256, stride=2)
    
        # [b, 256, h, w] => [b, 512, h, w]
        self.blk3 = ResBlk(256, 512, stride=2)
    
        # [b, 512, h, w] => [b, 512, h, w]
        self.blk4 = ResBlk(512, 512, stride=2)
    
        self.outlayer = nn.Linear(512 * 1 * 1, 10)
    
      def forward(self, x):
        """
    
        :param x:
        :return:
        """
        # [b, 1, h, w] => [b, 64, h, w]
        x = F.relu(self.conv1(x))
    
        # [b, 64, h, w] => [b, 512, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)
    
        # print(x.shape) # [b, 512, 1, 1]
        # 意思就是不管之前的特征图尺寸为多少,只要设置为(1,1),那么最终特征图大小都为(1,1)
        # [b, 512, h, w] => [b, 512, 1, 1]
        x = F.adaptive_avg_pool2d(x, [1, 1])
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)
    
        return x
    
    
    def main():
      blk = ResBlk(1, 128, stride=4)
      tmp = torch.randn(512, 1, 28, 28)
      out = blk(tmp)
      print('blk', out.shape)
    
      model = ResNet18()
      x = torch.randn(512, 1, 28, 28)
      out = model(x)
      print('resnet', out.shape)
      print(model)
    
    
    if __name__ == '__main__':
      main()

    再写绘图utils.py

    代码如下

    import torch
    from matplotlib import pyplot as plt
    
    device = torch.device('cuda')
    
    
    def plot_curve(data):
      fig = plt.figure()
      plt.plot(range(len(data)), data, color='blue')
      plt.legend(['value'], loc='upper right')
      plt.xlabel('step')
      plt.ylabel('value')
      plt.show()
    
    
    def plot_image(img, label, name):
      fig = plt.figure()
      for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')
        plt.title("{}: {}".format(name, label[i]python.item()))
        plt.xticks([])
        plt.yticks([])
      plt.show()
    
    
    def one_hot(label, depth=10):
      out = torch.zeros(label.size(0), depth).cuda()
      idx = label.view(-1, 1)
      out.scatter_(dim=1, index=idx, value=1)
      return out

    最后是主函数mnist_train.py

    代码如下:

    import torch
    from torch import nn
    from torch.nn import functional as F
    from torch import optim
    from resnet18 import ResNet18
    
    import torchvision
    from matplotlib import pyplot as plt
    
    from utils import plot_image, plot_curve, one_hot
    
    batch_size = 512
    
    # 加载数据
    train_loader = torch.utils.data.DataLoader(
      torchvision.datasets.MNIST('mnist_data', train=True, download=True,
                   transform=torchvision.transforms.Compose([
                     torchvision.transforms.ToTensor(),
                     torchvision.transforms.Normalize(
                       (0.1307,), (0.3081,))
                   ])),
      batch_size=batch_size, shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(
      torchvision.datasets.MNIST('mnist_data/', train=False, download=True,
                   transform=torchvision.transforms.Coandroidmpose([
                     torchvision.transforms.ToTensor(),
                     torchvision.transforms.Normalize(
                       (0.1307,), (0.3081,))
                   ])),
      batch_size=batch_size, shuffle=False)
    
    # 在装载完成后,我们可以选取其编程客栈中一个批次的数据进行预览
    x, y = next(iter(train_loader))
    
    # x:[512, 1, 28, 28], y:[512]
    print(x.shape, y.shape, x.min(), x.max())
    plot_image(x, y, 'image sample')
    
    device = torch.device('cuda')
    
    net = ResNet18().to(device)
    
    optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
    
    train_loss = []
    
    for epoch in range(5):
    
      # 训练
      net.train()
      for batch_idx, (x, y) in enumerate(train_loader):
    
        # x: [b, 1, 28, 28], y: [512]
        # [b, 1, 28, 28] => [b, 10]
        x, y = x.to(device), y.to(device)
        out = net(x)
        # [b, 10]
        y_onehot = one_hot(y)
        # loss = mse(out, y_onehot)
        loss = F.mse_loss(out, y_onehot).开发者_Python教程to(device)
        # 先给梯度清0
        optimizer.zero_grad()
        loss.backward()
        # w' = w - lr*grad
        optimizer.step()
    
        train_loss.append(loss.item())
    
        if batch_idx % 10 == 0:
          print(epoch, batch_idx, loss.item())
    
    plot_curve(train_loss)编程客栈
    # we get optimal [w1, b1, w2, b2, w3, b3]
    
    # 测试
    net.eval()
    total_correct = 0
    for x, y in test_loader:
      x, y = x.cuda(), y.cuda()
      out = net(x)
      # out: [b, 10] => pred: [b]
      pred = out.argmax(dim=1)
      correct = pred.eq(y).sum().float().item()
      total_correct += correct
    
    total_num = len(test_loader.dataset)
    acc = total_correct / total_num
    print('test acc:', acc)
    
    x, y = next(iter(test_loader))
    x, y = x.cuda(), y.cuda()
    out = net(x)
    pred = out.argmax(dim=1)
    x = x.cpu()
    pred = pred.cpu()
    plot_image(x, pred, 'test')

    结果为:

    4 90 0.009581390768289566

    4 100 0.010348389856517315

    4 110 0.01111914124339819

    test acc: 0.9703

    运行时注意把模型和参数放在GPU里,这样节省时间,此代码作为测试代码,仅供参考。

    总结

    以上为个人经验,希js望能给大家一个参考,也希望大家多多支持我们。

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    关注公众号