开发者

Python Pandas读取Excel日期数据的异常处理方法

开发者 https://www.devze.com 2022-12-11 14:04 出处:网络 作者: 小小明-代码实体
目录异常描述出现原因解决方案:修改自定义格式pandas直接解析Excel数值为日期总结 异常描述
目录
  • 异常描述
  • 出现原因
  • 解决方案:修改自定义格式
  • pandas直接解析Excel数值为日期
  • 总结 

异常描述

有时我们的Excel有一个调整过自定义格式的日期字段:

Python Pandas读取Excel日期数据的异常处理方法

当我们用pandas读取时却是这样的效果:

Python Pandas读取Excel日期数据的异常处理方法

不管如何指定参数都无效。

出现原因

没有使用系统内置的日期单元格格式,自定义格式没有对负数格式进行定义,pandas读取时无法识别出是日期格式,而是读取出单元格实际存储的数值。

Python Pandas读取Excel日期数据的异常处理方法

解决方案:修改自定义格式

可以修改为系统内置的自定义格式:

Python Pandas读取Excel日期数据的异常处理方法

或者在自定义格式上补充负数的定义:

Python Pandas读取Excel日期数据的异常处理方法

增加;@即可

pandas直接解析Excel数值为日期

有时这种Excel很多,我们需要通过pandas批量读取,挨个人工修改Excel的自定义格式费时费力,下面我演示如何使用pandas直接解析这些数值成为日期格式。

excel中常规格式和日期格式的转换规则如下:

1900/1/1为起始日期,转换的数字是1,往后的每一天增加1

1900/1/2转换为数字是 2

1900/1/3转换为数字是 3

1900/1/4转换为数字是 4

以此类推

excel中时间转换规则如下:

在时间中的规则是把1天转换为数字是 1

每1小时就是 1/24

每1分钟就是 1/(24×60)=1/1440

每1秒钟就是 1/(24×60×60)=1/86400

根据Excel的日期存储规则,我们只需要以1900/1/1为基准日期,根据数值n偏移n-1天即可得到实际日期。不过还有个问题,Excel多存储了1900年2月29日这一天,而正常的日历是没有这一天的,而我们的日期又都是大于1900年的,所以应该偏移n-2天,干脆使用1899年12月30日作为基准,这样不需要作减法操作。

解析代码如下:

import pandahttp://www.cppcns.coms as pd
from pandas.tseries.offsets impowww.cppcns.comrt Day

df = pd.read_excel("日期.xlsx")
basetime = pd.to_datetime("1899/12/3lZDiLOi0")
df.日期 = df.日期.apply(lambda x: basetime+Day(x))
df.日期 = df.日期.apply(lambda x: f"{x.month}月{x.day}日")
df.head()
 日期
06月8日
16月9日
26月10日
36月11日
46月12日

如果需要调用time的strftime方法,由于包含中文则需要设置locale:

import pandas as pd
from pandas.tseries.offsets import Day
import locale
locale.setlocale(locale.LC_CTYPE, 'chinese')

df = pd.read_excel("日期.xlsx")
basetime = pd.to_datetime("1899/12/30")
df.日期 = www.cppcns.comdf.日期.apply(lambda x: basetime+Day(x))
df.日期 = df.日期.dt.strftime('%Y年%m月%d日')
df.head()
 日期
02021年06月08日
12021年06月09日
22021年06月10日
32021年06月11日
42021年06月12日

总结 

到此这篇关于python&nbs编程客栈p;Pandas读取Excel日期数据的异常处理的文章就介绍到这了,更多相关Pandas读取Excel日期数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

精彩评论

暂无评论...
验证码 换一张
取 消

关注公众号