目录
- 摘要
- 1、直接使用OpenCV
- 2、使用ffmpeg
- 2.1、安装方法
- 2.2、代码实现
- 3、多线程的方式读取图片
- 4、多进程的方式拉流
摘要
本文介绍几种从摄像头拉流的方法。
1、直接使用OpenCV
直接使用opencv的cv2.VideoCapture直接读取rtsp视频流,但是这样做的缺点是延迟严重、出现掉帧、花屏现象等,原因在于opencv自己有一个缓存,每次会顺序从自己的缓存中读取,而不是直接读取最新帧。
代码如下:
import cv2 import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) user_name, user_pwd = "admin", "1234" ca_ip="192.168.1.100" channel=2 cap = cv2.VideoCaptujavascriptre("rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel)) if cap.isOpened(): print("Opened") while cap.isOpened(): ret, frame = cap.read() cv2.imwrite("opencv_"+time_str() + ".jpg", frame)
2、使用ffmpeg
FFmpeg是一套强大的视频、音频处理程序,也是很多视频处理软件的基础 。但是FFmpeg的命令行使用起来有一定的学习成本。而ffmpeg-python就是解决FFmpeg学习成本的问题,让开发者使用python就可以调用FFmpeg的功能,既减少了学习成本,也增加了代码的可读性。
github地址:https://github.com/kkroening/ffmpeg-python
2.1、安装方法
2.1.1、安装ffmpeg-python
ffmpeg-python可以通过典型的 pip 安装获取最新版本(注意:是ffmpeg-python,不要写成了python-ffmpeg):
pip install ffmpeg-python
或者可以从本地克隆和安装源:
git clone git@github.com:kkroening/ffmpeg-python.git pip install -e ./ffmpeg-pythjson
2.1.2、安装FFmpeg
使用该库,需要自行安装FFmpeg,如果电脑已经安装了,可以忽略本步骤。这里推荐直接使用conda进行安装,可以省下很多麻烦,其他的安装方式自行百度。
conda install ffmpeg
2.2、代码实现
使用ffmpeg读取rtsp流并转换成numpy array,并使用cv2.imwrite保存。
import ffmpeg import numpy as np import cv2 import datetime def main(source): args = { "rtsp_transport": "tcp", "fflags": "nobuffer", "flags": "low_delay" } # 添加参数 probe = ffmpeg.probe(source) cap_info = next(x for x in probe['streams'] if x['codec_type'] == 'video') print("fps: {}".format(cap_info['r_frame_rate'])) width = cap_info['width'] # 获取视频流的宽度 height = cap_info['height'] # 获取视频流的高度 up, down = str(cap_info['r_frame_rate']).split('/') fps = eval(up) / eval(down) print("fps: {}".format(fps)) # 读取可能会出错错误 process1 = ( ffmpeg .input(source, **args) .output('pipe:', format='rawvideo', pix_fmt='rgb24') .overwrite_output() .run_async(pipe_stdout=True) ) while True: in_bytes = process1.stdout.read(width * height * 3) # 读取图片 if not in_b开发者_JS培训ytes: break # 转成ndarray in_frame = ( np .frombuffer(in_bytes, np.uint8) .reshape([height, width, 3]) ) frame = cv2.cvtColor(in_frame, cv2.COLOR_RGB2BGR) # 转成BGR # cv2.imshow(time_str(), frame) cv2.imwrite(time_str()+".jpg", frame) # if cv2.waitKey(1) == ord('q'): # break process1.kill() # 关闭 def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) if __name__ == "__main__": # rtsp流需要换成自己的 user_name, user_pwd = "admin", "1234" ca_ip = php"192.168.1.168" channel = 2 alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel) main(alhua_rtsp)
3、多线程的方式读取图片
采用多线程的方式,新开一个线程,利用变量、队列等方式保存最新帧,使得每次都读取最新帧,而不是opencv自己缓存中的顺序帧,不会延迟,不会花屏了,代码如下:
import cv2 import threading import sys import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) class RTSCapture(cv2.VideoCapture): _cur_frame = None _reading = False schemes = ["rtsp://","rtmp://"] @staticmethod def create(url, *schemes): rtscap = RTSCapture(url) rtscap.frame_receiver = threading.Thread(target=rtscap.recv_frame, daemon=True) rtscap.schemes.extend(schemes) if isinstance(url, str) and url.startswith(tuple(rtscap.schemes)): rtscap._reading = True elif isinstance(url, int): pass return rtscap def isStarted(self): ok = self.isOpened() if ok and self._reading: ok = self.frame_receiver.is_alive() return ok def recv_frame(self): while self._reading and self.isOpened(): ok, frame = self.read() if not ok: break self._cur_frame = frame self._reading = False def read2(self): frame = self._cur_frame self._cur_frame = None return frame is not None, frame def start_read(self): self.frame_receiver.start() self.read_latest_frame = self.read2 if self._reading else self.read def stop_read(self): self._reading = False if self.frame_receiver.is_alive(): self.frame_receiver.join() if __name__ == '__main__': user_name, user_pwd = "admin", "1234" ca_ip = "192.168.1.100" channel = 2 alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel) rtscap = RTSCapture.create(alhua_rtsp) rtscap.start_read() while rtscap.isStarted(): ok, frame = rtscap.read_latest_frame() # if cv2.waitKey(100) & 0xFF == ord('q'): # break if not ok: continue # inhere # cv2.imshow(time_str(), frame) cv2.imwrite(time_str() + ".jpg", frame) rtscap.stop_read() rtscap.release() cv2.destroyAllWindows()
运行结果:
4、多进程的方式拉流
使用Python3自带的多进程模块,创建一个队列,进程A从通过rtsp协议从视频流中读取出每一帧,并放入队列中,进程B从队列中将图片取出,处理后进行显示。进程A如果发现队列里有两张图片(证明进程B的读取速度跟不上进程A),那么进程A主动将队列里面的旧图片删掉,换上新图片。通过多线程的方法:
代码如下:
import cv2 import multiprocessing as mp import time import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) def image_put(q, user, pwd, ip, channel=1): cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" % (user, pwd, ip, cha编程nnel)) if cap.isOpened(): print('HIKVISION') else: cap = cv2.VideoCapture("rtsp://%s:%s@%s/cam/realmonitor?channel=%d&subtype=0" % (user, pwd, ip, channel)) print('DaHua') while True: q.put(cap.read()[1]) q.get() if q.qsize() > 1 else time.sleep(0.01) def image_get(q, window_name): # cv2.namedwindow(window_name, flags=cv2.WINDOW_FREERATIO) while True: frame = q.get() # cv2.imshow(window_name, frame) # cv2.waitKey(1) cv2.imwrite("opencv_"+time_str() + ".jpg", frame) cv2.waitKey(1) def run_single_camera(): user_name, user_pwd, camera_ip = "admin", "admin123456", "192.168.35.121" mp.set_start_method(method='spawn') # init queupythone = mp.Queue(maxsize=2) processes = [mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip)), mp.Process(target=image_get, args=(queue, camera_ip))] [process.start() for process in processes] [process.join() for process in processes] def run_multi_camera(): # user_name, user_pwd = "admin", "password" user_name, user_pwd = "admin", "1234" camera_ip_l = [ "192.168.1.XX3", # ipv4 "192.168.1.XX2", "192.168.1.XX1", ] mp.set_start_method(method='spawn') # init queues = [mp.Queue(maxsize=90) for _ in camera_ip_l] processes = [] for queue, camera_ip in zip(queues, camera_ip_l): processes.append(mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip))) processes.append(mp.Process(target=image_get, args=(queue, camera_ip))) for process in processes: process.daemon = True process.start() for process in processes: process.join() if __name__ == '__main__': # run_single_camera() run_multi_camera() pass
到此这篇关于Python实现从网络摄像头拉流的方法分享的文章就介绍到这了,更多相关Python网络摄像头拉流内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论