开发者

python异步爬虫之多线程

开发者 https://www.devze.com 2022-12-10 11:43 出处:网络 作者: 阿南-anan
多线程,多进程(不建议使用)优点:可以为相关阻塞的操作单独开启线程或者进程,阻塞操作可以异步执行弊端:无法无限制开启多线程或多进程。原则:CSzTMeNaAl线程池处理的是阻塞且耗时的操作

多线程,多进程(不建议使用)

优点:可以为相关阻塞的操作单独开启线程或者进程,阻塞操作可以异步执行

弊端:无法无限制开启多线程或多进程。

原则:CSzTMeNaAl线程池处理的是阻塞且耗时的操作

单线爬虫示例:

import time

def get_page(str):
  print("正在下载:",str)
  time.sleep(2)
  print('下载成功:',str)

name_list = ['aa','bb','cc','dd']

start_time = time.time()

for i in range(len(name_list)):
  get_page(name_list[i])
end_time = time.time()
print('%d second'% (end_time-start_time))

python异步爬虫之多线程

多线程爬虫示例:

import time
# 导入线程池模块对应的类
from multiprocessinhttp://www.cppcns.comg.dummy import Pool

start_time = time.time()
def get_page(str):
  print("正在下载:",str)
  time.sleeCSzTMeNaAlp(2)
  print('下载成功:',str)

name_list = ['aa','bb','cc','dd']

# 实例化一个线程池对象
pool = Pool(4)
# 将列表中每一个列表元素传递给get_page进行处理
pool.map(get_page,name_list)

end_time = time.time()
print(end_time-start_time)

python异步爬虫之多线程

案例:

# 多线爬虫示例
import requests
from lxml import etree
import re
from multiprocessing.dummy import Pool

headers = {
  'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0',
  'Content-type':'application/json',
}
# 对下述url发起请求解析出视频详情页的url和视频的名称
url = "https://pearvideo.com/category_5"
page_text = requests.get(url=url,headers=headers).text
tree = etree.HTML(page_text)
li_list = tree.xpath('//ul[@id="listvideoListUl"]/li')
urls = [] #存储所有视频的链接
for li in li_list:
  detail_url = 'https://pearvideo.com/' + li.xpath('./div/a/@href')[0]
  name = li.xpath('./div/a/div[2]/text()')[0]+'.mp4'
  # 对详情页的url发起请求
  detail_page_text = re编程客栈quests.get(url=detail_url,headers=headers).text
  # print(detail_url,name)
  # 从详情页中解析出视频的地址(url)
  id = re.findall(r'\d+', detail_url)[0]
#   https://pearvideo.com/videoStatus.jsp?contId=1751458&mrd=0.32392817067398805
  detail_vedio_url = 'https://pearvideo.com/videoStatus.jsp?contId='+id

  header1s = {
    'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0',
    'Content-type': 'application/json',
    'referer':detail_url
  }
  vedio_text = requests.get(url=detail_vedio_url,headers=header1s).json()
  # print(vedio_text)
  vedio_url = vedio_text['videoInfo']['videos']['srcUrl']
  dic = {
    'name': na编程客栈me,
    'url': vedio_url
  }
  urls.append(dic)
  print(vedio_url)
def get_video_data(dic):
  url = dic['url']
  print(dic['name'],'正在下载......')
  data = requests.get(url=url,headers=header1s).content
#  持久化存储操作
  with open(dic['name'],'wb') as fp:
    fp.write(data)
    print(dic['name'],'下载成功')
# 使用线程池对视频数据进行请求(较为耗时的阻塞操作)
pool = Pool(4)
pool.map(get_video_data,urls)

pool.close()
pool.join()

到此这篇关于python异步爬虫之多线程的文章就介绍到这了,更多相关python爬虫多线程内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

精彩评论

暂无评论...
验证码 换一张
取 消