开发者

pandas创建DataFrame对象失败的解决方法

开发者 https://www.devze.com 2023-01-18 09:33 出处:网络 作者: 无
目录报错代码报错翻译报错原因解决方法创建DataFrame对象的四种方法1. list列表构建DataFrame2. dict字典构建DataFrame3. ndarray创建DataFrame4. Series创建DataFrame报错代码
目录
  • 报错代码
  • 报错翻译
  • 报错原因
  • 解决方法
  • 创建DataFrame对象的四种方法
    • 1. list列表构建DataFrame
    • 2. dict字典构建DataFrame
    • 3. ndarray创建DataFrame
    • 4. Series创建DataFrame

报错代码

粉丝群一个小伙伴想pandas创建DataFrame对象,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下:

import pandas as pd

data = {'name': ['a', 'b'],
        'Height': [140, 150, 160, 170],
        'Weight': [40, 50, 60, 70]}
df = pd.DataFrame(data, index=list('abcd'))
print(df)

报错信息截图如下所示:

pandas创建DataFrame对象失败的解决方法

报错翻译

报错信息翻译如下

值错误:传递值的形状为(2,3),索引表示(4,3)

报错原因

传递创建DataFrame的值和索引对不上,小伙伴们按下面正确的方法创建即可!!!

解决方法

每一个列表的长度都要相同

import pandas as pd

data = {'name': ['a', 'b','c','d'],
        'Height': [155, 160, 175, 180],
        'Weight': [50, 48, 52, 65]}
df = pdphp.DataFrame(data, index=list('abcd'))
print(df)

运行结果:

pandas创建DataFrame对象失败的解决方法

创建DataFrame对象的四种方法

DataFrame 构造方法如下:

pandas.DataFrame( data, index, colupythonmns, dtype, copy)

参数说明:

  • data:一组数据(ndarray、series, map, lists, dict 等类型)。
  • index:js索引值,或者可以称为行标签。
  • columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
  • dtype:数据类型。
  • copy:拷贝数据,默认为 False。

1. list列表构建DataFrame

1)通过单列表创建

>>> import pandas as pd
>>>
>>> data = [0, 1, 2, 3, 4, 5]
>>> df = pd.DataFrame(data)
>>> print(df)
   0
0  0
1  1
2  2
3  3
4  4
5  5
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)通过嵌套列表创建

>>> import pandas as pd
>>>
>>> data = [['小明', 20], ['小红', 10]]
>>> df = pd.DataFrame(data, columns=['name', 'age'], dtype=float)
sys:1: FutureWarning: Could not cast to float64, falling back to object. This behavior is deprecated. In a future version, when a dtype is passed to 'DataFrame', either all columns will be cast to that dtype, or a TypeError will be raised
>>> print(df)
  name   age
0   小明  20.0
1   小红  10.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

3)列表中嵌套字android典(字典的键被用作列名,缺失则赋值为NaN):

>>> import pandas as pd
>>>
>>> data = [{'Ajs': 1, 'B': 2}, {'A': 3, 'B': 4, 'C': 5}]
>>> df = pd.DataFrame(data)
>>> print(df)
   A  B    C
0  1  2  NaN
1  3  4  5.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2. dict字典构建DataFrame

使用 dict 创建,dict中列表的长度必须相同, 如果传递了index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。

1)普通创建:

>>> import pandas as pd
>>>
>>> data = {'name': ['小红', '小明', '小白'], 'age': [10, 20, 30]}
>>> df = pd.DataFrame(data)
>>> print(df)
  name  age
0   小红   10
1   小明   20
2   小白   30
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)设置index创建:

>>> import pandas as pd
>>>
>>> data = {'name': ['小红', '小明', '小白'], 'age': [10, 20, 30]}
>>> df = pd.DataFrame(data, index=['老三', '老二', '老大'])
>>> print(df)
   name  age
老三   小红   10
老二   小明   20
老大   小白   30
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

3. ndarray创建DataFrame

1)普通方式创建:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = np.random.randn(3, 3)
>>> print(data)
[[-1.9332579   0.70876382 -0.44291914]
 [-0.26228642 -1.05200338  0.57390067]
 [-0.49433001  0.70472595 -0.50749279]]
>>> print(type(data))
<class 'numpy.ndarray'>
>>> df = pd.DataFrame(data)
>>> print(df)
          0         1         2
0 -1.933258  0.708764 -0.442919
1 -0.262286 -1.052003  0.573901
2 -0.494330  0.704726 -0.507493
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)设置列名创建:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = np.random.randn(3, 3)
>>> print(data)
[[-0.22028147  0.62374794 -0.66210282]
 [-0.71785439 -1.21004547  1.15663811]
 [ 1.47843923  0.4385811   0.31931312]]
>>> print(type(data))
<class 'numpy.ndarray'>
>>> df = pd.DataFrame(data, columns=list("ABC"))
>>> print(df)
          A         B         C
0 -0.220281  0.623748 -0.662103
1 -0.717854 -1.210045  1.156638
2  1.478439  0.438581  0.319313
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

4. Series创建DataFrame

>>> import pandas as pd
>>>
>>> data = {'A': pd.Series(1, index=list(range(4)), dtype='float32'),
...         'B': pd.Series(2, index=list(range(4)), dtype='float32'),
...         'C': pd.Series(3, index=list(range(4)), dtype='float32')
...         }
>>> df = pd.DataFrame(data)
>>> print(df)
     A    B    C
0  1.0  2.0  3.0
1  1.0  2.0  3.0
2  1.0  2.0  3.0
3  1.0  2.0  3.0
>>> print(type(df))
<class 'pandas.core.frame.Da开发者_Python入门taFrame'>

帮忙解决

到此这篇关于pandas创建DataFrame对象失败的解决方法的文章就介绍到这了,更多相关pandas创建DataFrame对象失败内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

精彩评论

暂无评论...
验证码 换一张
取 消

关注公众号