目录
- 描述
- Tensorboard
- 创建 summary
- 存入数据
- metrics
- metrics.Mean()
- metrics.Accuracy()
- 变量更新 &重置
- 案例
- pre_process 函数
- get_data 函数
- train 函数
- test 函数
- main 函数
- 完整代码
- 可视化
描述
Fashion Mnist 是一个类似于 Mnist 的图像数据集. 涵盖 10 种类别的 7 万 (6 万训练集 + 1 万测试集) 个不同商品的图片.
Tensorboard
Tensorboard 是 tensorflow 的一个可视化工具.
创建 summary
我们可以通过tf.summary.create_file_writer(file_path)
来创建一个新的 summary 实例.
例子:
# 将当前时间作为子文件名 current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 监听的文件的路径 log_dir = 'logs/' + current_time # 创建writer summary_writer = tf.summary.create_file_writer(log_dir)
存入数据
通过tf.summary.scalar
我们可以向 summary 对象存入数据.
格式:
tf.summary.scalar( name, data, step=None, description=None )
例子:
with summary_writer.as_default(): tf.summary.scalar("train-loss", float(Cross_Entropy), step=step)
metrics
metrics.Mean()
metrics.Mean()
可以帮助我们计算平均数.
格式:
tf.keras.metrics.Mean( name='mean', dtype=None )
例子:
# 准确率表 loss_meter = tf.keras.metrics.Mean()
metrics.Accuracy()
格式:
tf.keras.metrics.Accuracy( name='accuracy', dtype=None )
例子:
# 损失表 acc_meter = tf.keras.metrics.Accuracy()
变量更新 &重置
我们可以通过update_state
来实现变量更新, 通过rest_state
来实现变量重置.
例如:
# 跟新损失 loss_meter.update_state(Cross_Entropy) # 重置 loss_meter.reset_state()
案例
pre_process 函数
def pre_process(x, y): """ 数据预处理 :param x: 特征值 :param y: 目标值 :return: 返回处理好的x, y """ # 转换x x = tf.cast(x, tf.float32) / 255 x = tf.reshape(x, [-1, 784]) # 转换y y = tf.cast(y, dtype=tf.int32) y = tf.one_hot(y, depth=10) return x, y
get_data 函数
def get_data(): """ 获取数据 :return: 返回分批完的训练集和测试集 """ # 获取数据 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() # 分割训练集 train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0) train_db = train_db.batch(batch_size).map(pre_process) # 分割测试集 test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0) test_db = test_db.batch(batch_size).map(pre_process) # 返回 return train_db, test_db
train 函数
def train(epoch, train_db): """ 训练数据 :param train_db: 分批的数据集 :return: 无返回值 """ for step, (x, y) in enumerate(train_db): with tf.GradientTape() as tape: # 获取模型输出结果 logits = model(x) # 计算交叉熵 Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True) Cross_Entropy = tf.reduce_sum(Cross_Entropy) # 跟新损失 loss_meter.update_state(Cross_Entropy) # 计算梯度 grads = tape.gradient(Cross_Entropy, model.trainable_variables) # 跟新参数 optimizer.apply_gradients(zip(grads, model.trainable_variables)) # 每100批调试输出一下误差 if step % 100 == 0: print("step:", step, "Cross_Entropy:", loss_meter.result().numpy()) # 重置 loss_meter.reset_state() # 可视化 with summary_writer.as_default(): tf.summary.scalar("train-loss", float(Cross_Entropy), step= epoch * 235 + step)
test 函数
def test(epoch, test_db): """ 测试模型 :param epoch: 轮数 :param test_db: 分批的测试集 :return: 无返回值 """ # 重置 acc_meter.reset_state() for x, y in test_db: # 获取模型输出结果 logits = model(x) # 预测结果 pred = tf.argmax(logits, axis=1) # 从one_hot编码变回来 y = tf.argmax(y, axis=1) # 计算准确率 acc_meter.update_state(y, pred) # 调试输出 print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", ) # 可视化 with summary_writer.as_default(): tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)
main 函数
def main(): """ 主函数 :return: 无返回值 """ # 获取数据 train_db, test_db = get_data() # 轮期 for epoch in range(iteration_num): train(epoch, train_db) test(epoch, test_db)
完整代码
import datetime import tensorflow as tf # 定义超参数 batch_size = 256 # 一次训练的样本数目 learning_rate = 0.001 # 学习率 iteration_num = 20 # 迭代次数 # 优化器 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) # 准确率表 loss_meter = tf.keras.metrics.Mean(http://www.cppcns.com) # 损失表 acc_meter = tf.keras.metrics.Accuracy() # 可视化 current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") log_dir = 'lwww.cppcns.comogs/' + current_time summary_writer = tf.summary.create_file_writer(log_dir) # 创建writer # 模型 model = tf.keras.Sequential([ tf.keras.layers.Dense(256, activation=tf.nn.relu), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(64, activation=tf.nn.relu), tf.keras.layers.Dense(32, activation=tf.nn.relu), tf.keras.layers.Dense(10) ]) # 调试输出summary model.build(input_shape=[None, 28 * 28]) print(model.summary()) def pre_process(x, y): """ 数据预处理 :param x: 特征值 :param y: 目标值 :return: 返回处理好的x, y """ # 转换x x = tf.cast(x, tf.float32) / 255 x = tf.reshape(x, [-1, 784]) # 转换y y = tf.cast(y, dtype=tf.int32) y = tf.one_hot(y, depth=10) return x, y def get_data(): """ 获取数据 :return: 返回分批完的训练集和测试集 """ # 获取数据 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() # 分割训练集 train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0) train_db = train_db.batch(batch_size).map(pre_process) # 分割测试集 test_db = tf.data.Dataset.from_tensor_slices((X_test, y_testwww.cppcns.com)).shuffle(10000, seed=0) test_db = test_db.batch(batch_size).map(pre_process) # 返回 return train_db, test_db def train(epoch, train_db): """ 训练数据 :param train_db: 分批的数据集 :return: 无返回值 """ for step, (x, y) in enumerate(train_db): with tf.GradientTape() as tape: # 获取模型输出结果 logits = model(x) # 计算交叉熵 Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True) Cross_Entropy = tf.reduce_sum(Cross_Entropy) # 跟新损失 loss_meter.update_state(Cross_Entropy) # 计算梯度 grads = tape.gradient(Cross_Entropy, model.trainable_variables) # 跟新参数 optimizer.apply_gradients(zip(grads, model.trainable_variables)) # 每100批调试输出一下误差 if step % 100 == 0: print("step:", step, "Cross_Entropy:", loss_meter.result().numpy()) # 重置 loss_meter.reset_state() # 可视化 with summary_writer.as_default(): tf.summary.scalar("train-loss", float(Cross_Entropy), step=epoch * 235 + step) def test(epoch, test_db): """ 测试模型 :param epoch: 轮数 :param test_db: 分批的测试集 :return: 无返回值 """ # 重置 acc_meter.reset_state() for x, y in test_db: # 获取模型输出结果 logits = model(x) # 预测结果 pred = tf.argmax(logits, axis=1) # 从one_hot编码变回来 y = tf.argmax(y, axis=1) # 计算准确率 acc_meter.update_state(y, pred) # 调试输出 print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", ) # 可视化 with summary_writer.as_default(): tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235) def main(): """ 主函数 :return: 无返回值 """ # 获取数据 train_db, test_db = get_data() # 轮期 for epoch in range(iteration_num): train(epoch, train_db) test(epoch, test_db) if __name__ == "__main__": main()
输出结果:
Model: "sequential"
_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 256) 200960 _________________________________________________________________ dense_1 (Dense) (None, 128) 32896 _________________________________________________________________ dense_2 (Dense) (None, 64) 8256 _________________________________________________________________ dense_3 (Dense) (None, 32) 2080 _________________________________________________________________ dense_4 (Dense) (None, 10) 330 ================================================================= Total params: 244,522 Trainable params: 244,522 Non-trainable params: 0 _________________________________________________________________ None 2021-06-14 18:01:27.399812: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) step: 0 Cross_Entropy: 591.5974 step: 100 Cross_Entropy: 196.49309 step: 200 Cross_Entropy: 125.2562 epoch: 1 Accuracy: 84.72999930381775 % step: 0 Cross_Entropy: 107.64579 step: 100 Cross_Entropy: 105.854385 step: 200 Cross_Entropy: 99.545975 epoch: 2 Accuracy: 85.83999872207642 % step: 0 Cross_Entropy: 95.42945 step: 100 Cross_Entropy: 91.366234 step: 200 Cross_Entropy: 90.84072 epoch: 3 Accuracy: 86.69999837875366 % step: 0 Cross_http://www.cppcns.comEntropy: 82.03317 step: 100 Cross_Entropy: 83.20552 step: 200 Cross_Entropy: 81.57012 epoch: 4 Accuracy: 86.11000180244446 % step: 0 Cross_Entropy: 82.94046 step: 100 Cross_Entropy: 77.56677 step: 200 Cross_Entropy: 76.996346 epoch: 5 Accuracy: 87.27999925613403 % step: 0 Cross_Entropy: 75.59219 step: 100 Cross_Entropy: 71.70899 step: 200 Cross_Entropy: 74.15144 epoch: 6 Accuracy: 87.29000091552734 % step: 0 Cross_Entropy: 76.65844 step: 100 Cross_Entropy: 70.09151 step: 200 Cross_Entropy: 70.84446 epoch: 7 Accuracy: 88.27999830245972 % step: 0 Cross_Entropy: 67.50707 step: 100 Cross_Entropy: 64.85907 step: 200 Cross_Entropy: 68.63099 epoch: 8 Accuracy: 88.41999769210815 % step: 0 Cross_Entropy: 65.50318 step: 100 Cross_Entropy: 62.2706 step: 200 Cross_Entropy: 63.80803 epoch: 9 Accuracy: 86.21000051498413 % step: 0 Cross_Entropy: 66.95486 step: 100 Cross_Entropy: 61.84385 step: 200 Cross_Entropy: 62.18851 epoch: 10 Accuracy: 88.45999836921692 % step: 0 Cross_Entropy: 59.779297 step: 100 Cross_Entropy: 58.602314 step: 200 Cross_Entropy: 59.837025 epoch: 11 Accuracy: 88.66000175476074 % step: 0 Cross_Entropy: 58.10068 step: 100 Cross_Entropy: 55.097878 step: 200 Cross_Entropy: 59.906315 epoch: 12 Accuracy: 88.70999813079834 % step: 0 Croshttp://www.cppcns.coms_Entropy: 57.584858 step: 100 Cross_Entropy: 54.95376 step: 200 Cross_Entropy: 55.797752 epoch: 13 Accuracy: 88.44000101089478 % step: 0 Cross_Entropy: 53.54782 step: 100 Cross_Entropy: 53.62939 step: 200 Cross_Entropy: 54.632828 epoch: 14 Accuracy: 87.02999949455261 % step: 0 Cross_Entropy: 54.387398 step: 100 Cross_Entropy: 52.323734 step: 200 Cross_Entropy: 53.968185 epoch: 15 Accuracy: 88.98000121116638 % step: 0 Cross_Entropy: 50.468914 step: 100 Cross_Entropy: 50.79311 step: 200 Cross_Entropy: 51.296227 epoch: 16 Accuracy: 88.67999911308289 % step: 0 Cross_Entropy: 48.753258 step: 100 Cross_Entropy: 46.809692 step: 200 Cross_Entropy: 48.08208 epoch: 17 Accuracy: 89.10999894142151 % step: 0 Cross_Entropy: 46.830627 step: 100 Cross_Entropy: 47.208813 step: 200 Cross_Entropy: 48.671318 epoch: 18 Accuracy: 88.77999782562256 % step: 0 Cross_Entropy: 46.15514 step: 100 Cross_Entropy: 45.026627 step: 200 Cross_Entropy: 45.371685 epoch: 19 Accuracy: 88.7399971485138 % step: 0 Cross_Entropy: 47.696465 step: 100 Cross_Entropy: 41.52749 step: 200 Cross_Entropy: 46.71362 epoch: 20 Accuracy: 89.56000208854675 %
可视化
到此这篇关于一小时学会TensorFlow2之Fashion Mnist的文章就介绍到这了,更多相关TensorFlow2 Fashion Mnist内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论