开发者

Pytorch学习笔记DCGAN极简入门教程

开发者 https://www.devze.com 2022-11-30 13:08 出处:网络 作者: xz1308579340
目录1.图片分类网络2.图片生成网络首先是图片分类网络:重点是生成网络每一个step分为三个步骤:1.图片分类网络这是一个二分类网络,可以是alxnet,vgg,resnet任何一个,负责对图片进行...
目录
  • 1.图片分类网络
  • 2.图片生成网络
    • 首先是图片分类网络:
    • 重点是生成网络
  • 每一个step分为三个步骤:

    1.图片分类网络

    这是一个二分类网络,可以是alxnet ,vgg,resnet任何一个,负责对图片进行二分类,区分图片是真实图片还是生成的图片

    2.图片生成网络

    输入是一个随机噪声,输出是一张图片,使用的是反卷积层

    相信学过深度学习的都能写出这两个网络,当然如果你写不出来,没关系,有人替你写好了

    首先是图片分类网络:

    简单来说就是cnn+relu+sogmid,可以换成任何一个分类网络,比如bgg,resnet等

    class Discriminator(nn.Module):
        def __init__(self, ngpu):
            super(Discriminator, self).__init__()
            self.ngpu = ngpu
            self.main = nn.Sequential(
                # input is (nc) x 64 x 64
                nn.Conv2d(nc, ndf, 4, 2,udNgRAp 1, bias=False),
                nn.LeakyReLU(0.2, inplace=True),
                # state size. (ndf) x 32 x 32
                nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                nn.BatchNorm2d(ndf * 2),
                nn.LeakyReLU(0.2, inplace=True),
                # state size. (ndf*2) x 16 x 16
                nn.Conv2d(ndf * 2, ndf * http://www.cppcns.com4, 4, 2, 1, bias=False),
                nn.BatchNorm2d(ndf * 4),
                nn.LeakyReLU(0.2, inplace=True),
                # state size. (ndf*4) x 8 x 8
                nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
                nn.BatchNorm2d(ndf * 8),
                nn.LeakyReLU(0.2, inplace=True),
                # state size. (ndf*8) x 4 x 4
                nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
                nn.Sigmoid()
            )
        def forward(self, input):
            return self.main(input)
    

    重点是生成网络

    代码如下,其实就是反卷积+bn+relu

    class Generator(nn.Module):
        def __init__(self, ngpu):
            super(Generator, self).__init__()
            self.ngpu = ngpu
            self.main = nn.Sequential(
                # input is Z, going into a convolution
                nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
                nn.BatchNorm2d(ngf * 8),
                nn.ReLU(True),
                # state size. (ngf*8) x 4 x 4
                nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
                nn.BatchNorm2d(ngf * 4),
                nn.ReLU(True),
                # state size. (ngf*4) x 8 x 8
                nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                nn.BatchNorm2d(ngf * 2),
                nn.ReLU(True),
                # state size. (ngf*2) x 16 x 16
                nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
                nn.BatchNorm2d(ngf),
                nn.ReLU(True),
                # state size. (ngf) x 32 x 32
                nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
                nn.Tanh()
                # state size. (nc) x 64 x 64
            )
        def forward(self, input):
            return self.main(input)
    
    
    

    讲道理,以上两个网络都挺简单。

    真正的重点到了,怎么训练

    每一个step分为三个步骤:

    • 训练二分类网络

      1.输入真实图片,经过二分类,希望判定为真实图片,更新二分类网络

      2.输入噪声,进过生成网络,生成一张图片,输入二分类网络,希望判定为虚假图片,更新二分类网络

    • 训练生成网络

      3.输入噪声,进过生成网络,生成一张图片,输入二分类网络,希望判定为真实图片,更新生成网络

    不多说直接上代码

    for epoch in range(num_epochs):
        # For each batch in the dataloader
        for i, data in enumerate(dataloader, 0):
            ############################
            # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
            ################http://www.cppcns.com###########
            ## Train with all-real batch
            netD.zero_grad()
            # Format batch
            real_cpu = data[0].to(device)
            b_size = real_cpu.size(0)
            label = torch.full((b_size,), real_label, device=device)
            # Forward pass real batch through D
            output = netD(real_cpu).view(-1)
            # Calculate loss on all-real batch
            errD_real = criterion(output, label)
            # Calculate gradients for D in backward pass
            errD_real.backward()
            D_x = output.mean().item()
            ## Train with all-fake batch
            # Generate batch of latent vectors
            noise = torch.randn(b_size, nz, 1, 1, device=device)
            # Generate fake image batch with G
            fake = netG(noise)
            label.fill_(fake_label)
            # Classify all fake batch with D
            output = netD(fake.detach()).viudNgRApew(-1)
            # Calculate D's loss on the all-fake batch
            errD_fake = criterion(output, label)
            # Calculate the gradients for this batch
            errD_fake.backward()
            D_G_z1 = output.mean().item()
            # Add the gradients from the all-real and all-fake batches
            errD = errD_real + errD_fake
            # Update D
            optimizerD.step()
            ############################
            # (2) Update G network: maximize log(D(G(z)))
            ###########################
            netG.zero_grad()
            label.fill_(real_label)  # fake labels are real for generator cost
            # Since we just updated D, perform another forward pass of all-fake batch through D
            output = netD(fake).view(-1)
            # Calculate G's loss based on this output
            errG = criterion(output, label)
            # Calculate gradients for G
            errG.backward()
            D_G_z2 = output.mean().item()
            # Update G
            optimizerG.step()
            # Output training stats
            if i % 50 == 0:
                print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                      % (epoch, num_epochs, i, len(dataloader),
                         errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
            # Save Losses for plotting later
            G_losses.append(errG.item())
            D_losses.append(errD.item())
            # Check how the generator is doing by saving G's output on fixed_noise
            if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
         udNgRAp       with torch.no_grad():
                    fake = netG(fixed_noise).detach().cpu()
                img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
            iters += 1
    

    以上就是Pytorch学习笔记DCGAN极简入门教程的详细内容,更多关于Pytorch学习DCGAN入门教程的资料请关注我们其它相关文章!

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消