开发者

使用Python手工计算x的算数平方根,来自中国古人的数学智慧

开发者 https://www.devze.com 2022-11-30 11:22 出处:网络 作者: Hann
代码sqrt(x,w=20,Float=False)x为非负实数,允许科学计数法w是当sqrt(x)为无理数或结果的小数部分很长时的最大位数。默认w=20Float当Float=True输出...

代码 

sqrt(x, w=20, Float=False)

x 为非负实数,允许科学计数法

w 是当sqrt(x)为无理数或结果的小数部分很长时的最大位数。默认w=20

Float 当Float=True输出浮点数,w设置如超出float精度则失效。默认输出字符串类型

def sqrt(x,w=20,Float=False):
    if x==0 or x==1:return str(x*1.0)
    if x<0: raise ValueError('x>=0')
    s,power = str(x),0
    t = s.find('e')
    if t!=-1:
        s=s.split('e')
        s[1] = int(s[1])
        if int(s[1])%2:
            tmp = str(s[0])
            s = [tmp[0]+tmp[2]+tmp[1]+tmp[3:],s[1]-1]
        s,power = *s,
    t = s.find('.')
    if t!=-1:
        if t%2: s='0'+s
        if not len(s)%2: s+='0'
    else:
        if len(s)%2: s='0'+s
    s = s.split('.')
    t = t,len(s[0])//2
    try: s = s[0]+s[1]
    except: s = s[0]
    s = [s[i:i+2] for i in range(len(s)) if not i%2][::-1]
    n = int(s.pop())
    i = 1
    while n>0 and i*i<=n: i+=1
    i -= 1
    m,n = str(n-i*i),i
    div = lambda x,y:[(i,y-(20*x+i)*i) for i in range(10) if y>=(20*x+i)*i]
    dot,ret = t[1],str(n)
    while w>0:
        dot -= 1;
        if dot==0: ret += '.'
        if dot<=0: w-=1
        m += s.pop() if s else '00'
        q,d = div(n,int(m))[-1]
        m,n = str(d),10*n+q
        ret += str(q)编程客栈
        if len(s)==0 and d==0:
            if ret.find('.')==-1: ret += '.0'
            break
    if power!=0:
        if power>0: ret += 'e+0'+str(power//2)
        else: ret += 'e-0'+str(power//2)[1:]
    if Float: ret = float(ret)
    return ret

原理

据说这个平方根计算法出自《九章算术》,成书在公元一世纪前后,总结了先秦到两汉的古代数学成就。古代数学家也真是鬼才,怎么想出来的?

操作过程:

小数点前后2位2位的隔开,不足2位用0补。然后首位试开方,第二位开始反复用公式 (Qn+1 * 20 + Qn) * Qn来试商 ; 下一结果Qn+2 = 10*Qn+1 + Qn。具体流程请自行搜索了解,大致流程如下:

使用Python手工计算x的算数平方根,来自中国古人的数学智慧

测试 sqrt(n)与n**0.5

>>> for i in range(17):
	print(f'sqrt({i})={sqrt(i)}')
	print(f'{i}**0.5={i**0.5}')	
sqrt(0)=0.0
0**0.5=0.0
sqrt(1)=1.0
1**0.5=1.0
sqrt(2)=1.41421356237309504880
2**0.5=1.4142135623730951
sqrt(3)=1.73205080756887729352
3**0.5=1.7320508075688772
sqrt(4)=2.0
4**0.5=2.0
sqrt(5)=2.23606797749978969640
5**0.5=2.23606797749979
sqrt(6)=2.44948974278317809819
6**0.5=2.449489742783178
sqrt(7)=2.64575131106459059050
7**0.5=2.6457513110645907
sqrt(8)=2.82842712474619009760
8**0.5=2.8284271247461903
sqrt(9)=3.0
9**0.5=3.0
sqrt(10)=3.16227766016837933199
10**0.5=3.1622776601683795
sqrt(11)=3.31662479035539984911
11**0.5=3.3166247903554
sqrt(12)=3.46410161513775458705
12**0.5=3.4641016151377544
sqrt(13)=3.60555127546398929311
13**0.5=3.605551275463989
sqrt(14)=3.74165738677394138558
14**0.5=3.74165738编程客栈67739413
sqrt(15)=3.87298334620741688517
15**0.5=3.872983346207417
sqrt(16)=4.0
16**0.5=4.0
>>> 
>>> 
>>> sqrt(2,Float=True) == 2**0.5
True
>>> sqrt(3,Float=True) == 3**0.5
True
>>> sqrt(123,Float=True) == 123**0.5
True
>>> 

科学计算法测试

>>> sqrt(1.23e+50)
'1.10905365064094171620e+025'
>>> 1.23e+50**0.5
1.1090536506409416e+25
>>> sqrt(1.23e+51)
'3.50713558335003638336e+025'
>>> 1.23e+51**0.5
3.5071355833500364e+25
>>> sqrt(1.23e-50)
'1.10905365064094171620e-025'
>>> 1.23e-50**0.5
1.1090536506409418e-25
>>> sqrt(1.23e-51)
'3.50713558335003638336e-026'
>>> 1.23e-51**0.5
3.5071355833500365e-26
>>> 

精度测试

>>> sqrt(2,100)
'1.41421356237309504880168872420969807856967187537694
80731766797379907324784621070388503875343276415727'
>>> sqrt(10,500)
'3.16227766016837933199889354443271853371955513932521
68268575048527925944386392382213442481083793002951
87347284152840055148548856030453880014690519596700
15390334492165717925994065915015347411333948412408
53169295770904715764610443692578790620378086099418
28371711548406328552999118596824564203326961604691
31433612894979189026652954361267617878135006138818
62785804636831349524780311437693346719738195131856
78403231241795402218308045872844614600253577579702
82864402902440797789603454398916334922265261206779'
>>> sqrt(123,2000)
'11.09053650640941716205160010260993291846337674245402
00228773128390850016331012896052334560795952104923
97609680678955280792187905933115292625456231839306
77251943912251383176574941199469582196976000438135
40867472202696805822192936674286399297485980945076
78295660716567970352602444301464684924479636459099
14867193001802834979182445692668356613065880869548
25999929108256938950212808340223106891096223696155
58407975630369894453553840958193501976809032496435
98351605065147790119568667920441106521130541775416
88403618227856731042118992185281429619080341919784
91236339758444278806715795552342614568993355758259
00257454016962686033789212494918951906742724387717
86816775058970553110606825772728456503631816127185
97236514403953501043370950197906664648656587402375
47456007486620199478701365589929806411967684259http://www.cppcns.com454
52983826062182085142259698311212942126801021825240
49746216571370198706996668818361845968235199845816
69902568378075870406180767774203205467306930309438
16832697339952984981648138573158982379175644441470
50866454616067044997958059525209028336061119869487
42330123683852090419874148218422184948658174234109
57266920859313915279433828848348895422861007776818
60008218306382698626583716405660864687800252861028
314345986820044670426225807681468275957http://www.cppcns.com78429365752
19552960734589394860581552514632178318401717998004
12904477515916582731378709757426533231624676879051
212773034754198939664219156829623279652021839395BKOpgeP40
07041575389626966661084388718863067485822881867488
00698329255619212758441301451712107894934052042668
13620261632356745839351541875140890682676375675084
74266141686980135645708807796240849684849035273656
15026469136389861472142022294507047846522584450886
83823021978858519029304962564972861464819539784518
43062402845984165814550404820570869649363216162428
32571582506529019502195720558586845830492641836612
65156560044594234298289454649568716622838760718998
14917847213523793754337786561375901264942957378010
57481468928695787589958271831183026476218342365982
72020291818311722410861264031411990033164594115086'
>>> 

1000位到1万位的耗时测试

>>> from time import time
>>> for i in range(1,11):
	t = time()
	s = sqrt(2,i*1000)
	print(i*1000,':',time()-t) 
1000 : 0.09099745750427246
2000 : 0.5609970092773438
3000 : 1.7489948272705078
4000 : 3.7850000858306885
5000 : 7.239997863769531
6000 : 12.108997106552124
7000 : 19.044997692108154
8000 : 28.065003395080566
9000 : 39.57198643684387
10000 : 54.04999876022339
>>> 

以上就是使用python手工计算x的算数平方根,更多关于Python手工计算x的算数平方根的资料请关注我们其它相关文章!

0

精彩评论

暂无评论...
验证码 换一张
取 消

关注公众号