开发者

python+mediapipe+opencv实现手部关键点检测功能(手势识别)

开发者 https://www.devze.com 2022-12-08 10:24 出处:网络 作者: Zensaan
目录一、mediapipe是什么?二、使用步骤1.引入库2.主代码3.识别结果补充:一、mediapipe是什么?
目录
  • 一、mediapipe是什么?
  • 二、使用步骤
    • 1.引入库
    • 2.主代码
    • 3.识别结果
  • 补充:

    一、mediapipe是什么?

    mediapipe官网

    二、使用步骤

    1.引入库

    代码如下:

    import cv2
    from mediapipe import solutions
    import time
    

    2.主代码

    代码如下:

    cap = cv2.VideoCapture(0)
    mpHands = solutions.hands
    hands = mpHands.Hands()
    mpDraw = solutions.drawing_utils
    p编程客栈Time = 0
    count = 0
    while True:
        success, img = cap.read()
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        results = hands.process(imgRGB)
        if results.multi_hand_landmarks:
            for handLms in results.multi_hand_landmarks:
                mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
        cTime = time.time()
        fps = 1 / (cTime - pTime)
        pTime = cTime
        cv2.putText(img, str(int(fps)), (25, 50), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 3)
        cv2.imshow("Image", img)
        cv2.waitKey(1)

    3.识别结果

    python+mediapipe+opencv实现手部关键点检测功能(手势识别)

    python+mediapipe+opencv实现手部关键点检测功能(手势识别)

    以上就是今天要讲的内容,本文仅仅简单介绍了mediapipe的使用,而mediapipe提供了大量关于图像识别等的方法。

    补充:

    下面看下基于mediapipe人脸网状识别。

    1.下载mediapipe库:

    pip install mediapipe

    2.完整代码:

    import cv2
    import mediapipe as mp
    import time
    mp_drawing = mp.solutions.drawing_utils
    mp_face_mesh = mp.solutions.face_mesh
    drawing_spec = mp_drawing.icpcPapDrawingSpec(thickness=1, circle_radius=1)
    cap = cv2.VideoCapture("3.mp4")
    with mp_face_mesh.FaceMesh(
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5) as face_mesh:
      while cap.isOpened():
        success, image = cap.read()
        if not success:
      http://www.cppcns.com    print("Ignoring empty camera frame.")
          # If loading a video, 编程客栈use 'break' instead of 'continue'.
          continue
        # Flip the image horizontally for a later selfie-view display, and convert
        # the BGR image to RGB.
        image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
        # To improve performance, optionally mark the image as not writeable to
        # pass by reference.
        image.flags.writeable = False
        results = face_mesh.编程客栈process(image)
        time.sleep(0.02)
        # Draw the face mesh annotations on the image.
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        if results.multi_face_landmarks:
          for face_landmarks in results.multi_face_landmarks:
            mp_drawing.draw_landmarks(
                image=image,
                landmark_list=face_landmarks,
                connections=mp_face_mesh.FACE_CONNECTIONS,
                landmark_drawing_spec=drawing_spec,
                connection_drawing_spec=drawing_spec)
        cv2.imshow('MediaPipe FaceMesh', image)
        if cv2.waitKey(5) & 0xFF == 27:
          break
    cap.release()
    

    python+mediapipe+opencv实现手部关键点检测功能(手势识别)

    到此这篇关于python+mediapipe+opencv实现手部关键点检测功能(手势识别)的文章就介绍到这了,更多相关python mediapipe opencv手势识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消