开发者

手把手教你使用TensorFlow2实现RNN

开发者 https://www.devze.com 2022-11-28 11:47 出处:网络 作者: 我是小白呀
目录概述权重共享计算过程:案例数据集RNN层获取数据完整代码概述RNN(RecurrentNeturalNetwork)是用于处理序列数据的神经网络.所谓序列数据,即前面的输入和后面的输...
目录
  • 概述
  • 权重共享
  • 计算过程:
  • 案例
    • 数据集
    • RNN 层
    • 获取数据
  • 完整代码

    概述

    RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.

    手把手教你使用TensorFlow2实现RNN

    权重共享

    传统神经网络:

    手把手教你使用TensorFlow2实现RNN

    RNN:

    手把手教你使用TensorFlow2实现RNN

    RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

    计算过程:

    手把手教你使用TensorFlow2实现RNN

    计算状态 (State)

    手把手教你使用TensorFlow2实现RNN

    计算编程客栈输出:

    手把手教你使用TensorFlow2实现RNN

    案例

    数据集

    IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.

    RNN 层

    class RNN(tf.keras.Model):
    
        def __init__(self, units):
            super(RNN, self).__init__()
    
            # 初始化 [b, 64] (b 表示 batch_size)
            self.state0 = [tf.zeros([batch_size, units])]
            self.state1 = [tf.zeros([batch_size, units])]
    
            # [b, 80] => [b, 80, 100]
            self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)
    
            self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
            self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
    
            # [b, 80, 100] => [b, 64] => [b, 1]
            self.out_layer = tf.keras.layers.Dense(1)
    
        def call(self, inputs, training=None):
            """
    
            :param inputs: [b, 80]
            :param training:
            :return:
            """
    
            state0 = self.state0
            state1 = self.state1
    
            x = self.embedding(inputs)
    
            for word in tf.unstack(x, axis=1):
                out0, state0 = self.rnn_cell0(word, state0, training=training)
                out1, state1 = self.rnn_cell1(out0, state1, training=training)
    
            # [b, 64] -> [b, 1]
            x = self.out_layer(out1)
    
            prob = tf.sigmoid(x)
    
            return prob
    

    获取数据

    def get_data():
        # 获取数据
        (X_train, y_train), (X_test, y_test) = tf.keras.datasEVJHDBRRets.imdb.load_data(num_words=total_words)
    
        # 更改句子长度
        X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
        X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)
    
        # 调试输出
        print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
        print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)
    
        # 分割训练集
        train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
        train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)
    
        # 分割测试集
        test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
        test_db = test_db.batch(batch_size, drop_remainder=True)
    
        return train_db, test_db
    

    完整代码

    import tensorflow as tf
    
    
    class RNN(tf.keras.Model):
    
        def __init__(self, units):
            super(RNN, self).__init__()
    
            # 初始化 [b, 64]
            self.state0 = [tf.zeros([batch_size, units])]
            self.state1 = [tf.zeros([batch_size, units])]
    
            # [b, 80] => [b, 80, 100]
            self.embedding = tf.keras.l编程客栈ayers.Embedding(total_words, embedding_len, input_length=max_review_len)
    
            self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
            self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
    
            # [b, 80, 100] => [b, 64] => [b, 1]
            self.out_layer = tf.keras.layers.Dense(1)
    
        def call(self, inputs, training=None):
            """
    
            :param inputs: [b, 80]
            :param training:
            :return:
            """
    
            state0 = self.state0
            state1 = self.state1
    
            x = self.embedding(inputs)
    
            for word in tf.unstack(x, axis=1):
                out0, state0 = self.rnn_cell0(word, state0, training=training)
                out1, state1 = self.rnn_cell1(out0, state1, training=training)
    
            # [b, 64] -> [b, 1]
            x = self.out_layer(out1)
    
            prob = tf.sigmoid(x)
    
            return prob
    
    
    # 超参数
    total_words = 10000  # 文字数量
    max_review_len = 80  # 句子长度
    embedding_len = 100  # 词维度
    http://www.cppcns.combatch_size = 1024  # 一次训练的样本数目
    learning_rate = 0.0001  # 学习率
    iteration_num = 20  # 迭代次数
    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
    loss = tf.losses.BinaryCrossentropy(from_logits=True)  # 损失
    model = RNN(64)
    
    # 调试输出summary
    model.build(input_shape=[None, 64])
    print(model.summary())
    
    # 组合
    model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
    
    
    def get_data():
        # 获取数据
        (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)
    
        # 更改句子长度
        X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
        X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)
    
        # 调试输出
        print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
        print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)
    
        # 分割训练集
        train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
        train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)
    
        # 分割测试集
        test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
        test_db = test_db.batch(batch_size, drop_remainder=True)
    
        return train_db, test_db
    
    
    if __name__ == "__main__":
        # 获取分割的数据集
        train_db, test_db = get_data()
    
        # 拟合
        model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)
    

    输出结果:

    Model: "rnn"

    _________________________________________________________________

    Layer (type) Output Shape Param #

    =================================================================

    embedding (Embedding) multiple 1000000

    _________________________________________________________________

    simple_rnn_cell (SimpleRNNCe multiple 10560

    _________________________________________________________________

    simple_rnn_cell_1 (SimpleRNN multiple 8256

    _________________________________________________________________

    dense (Dense) multiple 65

    =================================================================

    Total params: 1,018,881

    Trainable params: 1,018,881

    Non-trainable params: 0

    _________________________________________________________________

    None

    (25000, 80) (25000,)

    (25000, 80) (25000,)

    Epoch 1/20

    2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)

    24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994

    Epoch 2/20

    24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994

    Epoch 3/20

    24/24 [==============================] - 7s 297ms/step - lossEVJHDBRR: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994

    Epoch 4/20

    24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994

    Epoch 5/20

    24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994

    Epoch 6/20

    24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994

    Epoch 7/20

    24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994

    Epoch 8/20

    24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994

    Epoch 9/20

    24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240

    Epoch 10/20

    24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767

    Epoch 11/20

    24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399

    Epoch 12/20

    24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533

    Epoch 13/20

    24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878

    Epoch 14/20

    24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904

    Epoch 15/20

    24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907

    Epoch 16/20

    24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961

    Epoch 17/20

    24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014

    Epoch 18/20

    24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082

    Epoch 19/20

    24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966

    Epoch 20/20

    24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959

    Process finished with exit code 0

    到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    关注公众号