开发者

Pandas中GroupBy具体用法详解

开发者 https://www.devze.com 2022-11-28 11:31 出处:网络 作者: flydean
目录简介分割数据多indexget_groupdropnagroups属性index的层级group的遍历聚合操作通用聚合方法同时使用多个聚合方法NamedAgg不同的列指定不同的聚合方法转换操作过滤...
目录
  • 简介

  • 分割数据

    • 多index

    • get_group

    • dropna

    • groups属性

    • index的层级

  • group的遍历

    • 聚合操作

      • 通用聚合方法

        • 同时使用多个聚合方法

        • NamedAgg

        • 不同的列指定不同的聚合方法

      • 转换操作

        • 过滤操作

          • Apply操作

            简介

            pandas中的DF数据类型可以像数据库表格一样进行groupby操作。通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据。

            本文将会详细讲解Pandas中的groupby操作。

            分割数据

            分割数据的目的是将DF分割成为一个个的group。为了进行groupby操作,在创建DF的时候需要指定相应的label:

            df = pd.DataFrame(
               ...:     {
               ...:         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
               ...:         "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
               ...:         "C": np.random.randn(8),
               ...:         "D": np.random.randn(8),
               ...:     }
               ...: )
               ...:
            
            df
            Out[61]: 
                 A      B         C         D
            0  foo    one -0.490565 -0.233106
            1  bar    one  0.430089  1.040789
            2  foo    two  0.653449 -1.155530
            3  bar  three -0.610380 -0.447735
            4  foo    two -0.934961  0.256358
            5  bar    two -0.256263 -0.661954
            6  foo    one -1.132186 -0.304330
            7  foo  three  2.129757  0.445744
            
            

            默认情况下,groupby的轴是x轴。可以一列group,也可以多列group:

            In [8]: grouped = df.groupby("A")
            
            In [9]: grouped = df.groupby(["A", "B"])
            
            

            多index

            在0.24版本中,如果我们有多index,可以从中选择特定的index进行group:

            In [10]: df2 = df.set_index(["A", "B"])
            
            In [11]: grouped = df2.groupby(level=df2.index.names.difference(["B"]))
            
            In [12]: grouped.sum()
            Out[12]: 
                        C         D
            A                      
            bar -1.591710 -1.739537
            foo -0.752861 -1.402938
            
            

            get_group

            get_group 可以获取分组之后的数据:

            In [24]: df3 = pd.DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})
            
            In [25]: df3.groupby(["X"]).get_group("A")
            Out[25]: 
               X  Y
            0  A  1
            2  A  3
            
            In [26]: df3.groupby(["X"]).get_group("B")
            Out[26]: 
               X  Y
            1  B  4
            3  B  2

            dropna

            默认情况下,NaN数据会被排除在groupby之外,通过设置 dropna=False 可以允许NaN数据:

            In [27]: df_list = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
            
            In [28]: df_dropna = pd.DataFrame(df_list, columns=["a", "b", "c"])
            
            In [29]: df_dropna
            Out[29]: 
               a    b  c
            0  1  2.0  3
            1  1  NaN  4
            2  2  1.0  3
            3  1  2.0  2
            # Default ``dropna`` is set to True, which will exclude NaNs in keys
            In [30]: df_dropna.groupby(by=["b"], dropna=True).sum()
            Out[30]: 
                 a  c
            b        
            1.0  2  3
            2.0  2  5
            
            # In order to allow NaN in keys, set ``dropna`` to False
            In [31]: df_dropna.groupby(by=["b"], dropna=False).sum()
            Out[31]: 
                 a  c
            b        
            1.0  2  3
            2.0  2  5
            NaN  1  4

            groups属性

            groupby对象有个groups属性,它是一个key-value字典,key是用来分类的数据,value是分类对应的值。

            In [34]: grouped = df.groupby(["A", "B"])
            
            In [35]: grouped.groups
            Out[35]: {('bar', 'one'): [1], ('bar', 'three'): [3], ('bar',http://www.cppcns.com 'two'): [5], ('foo', 'one'): [0, 6], ('foo', 'three'): [7], ('foo', 'two'): [2, 4]}
            
            In [36]: len(grouped)
            Out[36]: 6
            
            

            index的层级

            对于多级index对象,groupby可以指定group的index层级:

            In [40]: arrays = [
               ....:     ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
               ....:     ["one", "two", "one", "two", "one", "two", "one", "two"],
               ....: ]
               ....: 
            
            In [41]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])
            
            In [42]: s = pd.Series(np.random.randn(8), index=index)
            
            In [43]: s
            Out[43]: 
            first  second
            bar    one      -0.919854
                   two      -0.042379
            baz    one       1.247642
                   two      -0.009920
            foo    one       0.290213
                   two       0.495767
            qux    one       0.362949
                   two       1.548106
            dtype: float64
            
            

            group第一级:

            In [44]: grouped = s.groupby(level=0)
            
            In [45]: grouped.sum()
            Out[45]: 
            first
            bar   -0.962232
            baz    1.237723
            foo    0.785980
            qux    1.911055
            dtype: float64
            
            

            group第二级:

            In [46]: s.groupby(level="second").sum()
            Out[46]: 
            second
            one    0.980950
            two    1.991575
            dtype: float64
            

            group的遍历

            得到group对象之后,我们可以通过for语句来遍历group:

            In [62]: grouped = df.groupby('A')
            
            In [63]: for name, group in grouped:
               ....:     print(name)
               ....:     print(group)
               ....: 
            bar
                 A      B         C         D
            1  bar    one  0.254161  1.511763
            3  bar  three  0.215897 -0.990582
            5  bar    two -0.077118  1.211526
            foo
                 A      B         C         D
            0  foo    one -0.575247  1.346061
            2  foo    two -1.143704  1.627081
            4  foo    two  1.193555 -0.441652
            6  foo    one -0.408530  0.268520
            7  foo  three -0.862495  0.024580
            
            

            如果是多字段group,group的名字是一个元组:

            In [64]: for name, group in df.groupby(['A', 'B']):
               ....:     print(name)
               ....:     print(group)
               ....: 
            ('bar', 'one')
                 A    B         C         D
            1  bar  one  0.254161  1.511763
            ('bar', 'three')
                 A      B         C         D
            3  bar  three  0.215897 -0.990582
            ('bar', 'two')
                 A    B         C         D
            5  bar  two -0.077118  1.211526
            ('foo', 'one')
                 A    B         C         D
            0  foo  one -0.575247  1.346061
            6  foo  one -0.408530  0.268520
            ('foo', 'three')
                 A      B         C        D
            7  foo  three -0.862495  0.02458
            ('foo', 'two')
                 A    B         C         D
            2  foo  two -1.143704  1.627081
            4  foo  two  1.193555 -0.441652
            

            聚合操作

            分组之后,就可以进行聚合操作:

            In [67]: grouped = df.groupby("A")
            
            In [68]: grouped.aggregate(np.sum)
            Out[68]: 
                        C         D
            A                      
            bar  0.392940  1.732707
            foo -1.796421  2.824590
            
            In [69]: grouped = df.groupby(["A", "B"])
            
            In [70]: grouped.aggregate(np.sum)
            Out[70]: 
                              C         D
            A   B                        
            bar one    0.254161  1.511763
                three  0.215897 -0.990582
                two   -0.077118  1.211526
            foo one   -0.983776  1.614581
                three -0.862495  0.024580
                two    0.049851  1.185429
            
            

            对于多index数据来说,默认返回值也是多index的。如果想使用新的index,可以添加 as_index = False:

            In [71]: grouped = df.groupby(["A", "B"], as_index=False)
            
            In [72]: grouped.aggregate(np.sum)
            Out[72]: 
                 A      B         C         D
            0  bar    one  0.254161  1.511763
            1  bar  three  0.215897 -0.990582
            2  bar    two -0.077118  1.211526
            3  foo    one -0.983776  1.614581
            4  foo  three -0.862495  0.024580
            5  foo    two  0.049851  1.185429
            
            In [73]: df.groupby("A", as_index=False).sum()
            Out[73]: 
                 A         C         D
            0  bar  0.392940  1.732707
            1  foo -1.796421  2.824590
            
            

            上面的效果等同于reset_index

            In [74]: df.groupby(["A", "B"]).sum().reset_index()
            grouped.size() 计算group的大小:
            
            In [75]: grouped.size()
            Out[75]: 
                 A      B  size
            0  bar    one     1
            1  bar  three     1
            2  bar    two     1
            3  foo    one     2
            4  foo  three     1
            5  foo    two     2
            
            

            grouped.describe() 描述group的信息:

            In [76]: grouped.describe()
            Out[76]: 
                  C                                                    ...         D                                                  
              count      mean       std       min       25%       50%  ...       std       min       25%       50%       75%       max
            0   1.0  0.254161       NaN  0.254161  0.254161  0.254161  ...       NaN  1.511763  1.511763  1.511763  1.511763  1.511763
            1   1.0  0.215897       NaN  0.215897  0.215897  0.215897  ...       NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582
            2   1.0 -0.077118       NaN -0.077118 -0.077118 -0.077118  ...       NaN  1.211526  1.211526  1.211526  1.211526  1.211526
            3   2.0 -0.491888  0.117887 -0.575247 -0.533567 -0.491888  ...  0.761937  0.268520  0.537905  0.807291  1.076676  1.346061
            4   1.0 -0.862495       NaN -0.862495 -0.862495 -0.862495  ...       NaN  0.024580  0.024580  0.024580  0.024580  0.024580
            5   2.0  0.024925  1.652692 -1.143704 -0.559389  0.024925  ...  1.462816 -0.441652  0.075531  0.592714  1.109898  1.627081
            
            [6 rows x 16 columns]
            
            

            FrDcK用聚合方法

            下面是通用的聚合方法:

            函数 描述
            mean() 平均值
            sum() 求和
            size() 计算size
            count() group的统计
            std() 标准差
            var() 方差
            sem() 均值的标准误
            describe() 统计信息描述
            first() 第一个group值
            last() 最后一个group值
            nth() 第n个group值
            min() 最小值
            max() 最大值

            同时使用多个聚合方法

            可以同时指定多个聚合方法:

            In [81]: grouped = df.groupby("A")
            
            In [82]: grouped["C"].agg([np.sum, np.mean, np.std])
            Out[82]: 
                      sum      mean       std
            A                                
            bar  0.392940  0.130980  0.181231
            foo -1.796421 -0.359284  0.912265
            
            

            可以重命名:

            In [84]: (
               ....:     grouped["C"]
               ....:     .agg([np.sum, np.mean, np.std])
               ....:     .rename(columns={"sum": "foo", "mean": "bar", "std": "baz"})
               ....: )
               ....: 
            Out[84]: 
                      foo       bar       baz
            A                                
            bar  0.392940  0.130980  0.181231
            foo -1.796421 -0.359284  0.912265
            

            NamedAgg

            NamedAgg 可以对聚合进行更精准的定义,它包含 column 和aggfunc 两个定制化的字段。

            In [88]: animals = pd.DataFrame(
               ....:     {
               ....:         "kind": ["cat", "dog", "cat", "dog"],
               ....:         "height": [9.1, 6.0, 9.5, 34.0],
               ....:         "weight": [7.9, 7.5, 9.9, 198.0],
               ....:     }
               ....: )
               ....:
            
            In [89]: animals
            Out[89]: 
              kind  height  weight
            0  cat     9.1     7.9
            1  dog     6.0     7.5
            2  cat     9.5     9.9
            3  dog    34.0   198.0
            
            In [90]: animals.groupby("kind").agg(
               ....:     min_height=pd.NamedAgg(column="height", aggfunc="min"),
               ....:     max_height=pd.NamedAgg(column="height", aggfunc="max"),
               ....:     average_weight=pd.NamedAgg(column="weight", aggfunc=np.mean),
               ....: )
               ....: 
            Out[90]: 
                  min_height  max_height  average_weight
            kind                                        
            cat          9.1         9.5            8.90
            dog          6.0        34.0          102.75
            
            

            或者直接使用一个元组:

            In [91]: animals.groupby("kind").agg(
               ....:     min_height=("height", "min"),
               ....:     max_height=("height", "max"),
               ....:     average_weight=("weight", np.mean),
               ....: )
               ....: 
            Out[91]: 
                  min_height  max_height  average_weight
            kind                                        
            cat          9.1         9.5            8.90
            dog          6.0        34.0          102.75
            

            不同的列指定不同的聚合方法

            通过给agg方法传入一个字典,可以指定不同的列使用不同的聚合:

            In [95]: grouped.agg({"C": "sum", "D": "std"})
            Out[95]: 
                        C         D
            A                      
            bar  0.392940  1.366330
            foo -1.796421  0.884785
            

            转换操作

            转换是将对象转换为同样大小对象的操作。在数据分析的过程中,经常需要进行数据的转换操作。

            可以接lambda操作:

            In [112]: ts.groupby(lambda x: x.yea编程客栈r).transform(lambda x: x.max() - x.min())
            

            填充na值:

            In [121]: transformed = grouped.transform(lambda x: x.fillna(x.mean()))
            

            过滤操作

            filter方法可以通过lambda表达式来过滤我们不需要的数据:

            In [136]: sf = pd.Series([1, 1, 2, 3, 3, 3])
            
            In [137]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
            Out[137]: 
            3    3
            4    3
            5    3
            dtype: int64
            
            

            Apply操作

            有些数据可能不适合进行聚合或者转换操作,Pandas提供了一个 apply 方法,用来进行更加灵活的转换操作。

            In [156]: df
            Out[156]: 
                 A      B         C         D
            0  foo    one -0.575247  1.346061
            1  bar    one  0.254161  1.511763
            2  foo    two -1.143704  1.627081
            3  bar  three  0.215897 -0.990582
            4  foo    two  1.193555 -0.441652
            5  bar    two -0.077118  1.211526
            6  foo    o编程客栈ne -0.408530  0.268520
            7  foo  three -0.862495  0.024580
            
            In [157]: grouped = df.groupby("A")
            
            # could also just call .describe()
            In [158]: grouped["C"].apply(lambda x: x.describe())
            Out[158]: 
            A         
            bar  count    3.000000
                 mean     0.130980
                 std      0.181231
                 min     -0.077118
                 25%      0.069390
                            ...   
            foo  min     -1.143704
                 25%     -0.862495
                 50%     -0.575247
                 75%     -0.408530
                 max      1.193555
            Name: C, Length: 16, dtype: float64
            
            

            可以外接函数:

            In [159]: grouped = df.groupby('A')[编程客栈'C']
            
            In [160]: def f(group):
               .....:     return pd.DataFrame({'original': group,
               .....:                          'demeaned': group - group.mean()})
               .....:
            
            In [161]: grouped.apply(f)
            Out[161]: 
               original  demeaned
            0 -0.575247 -0.215962
            1  0.254161  0.123181
            2 -1.143704 -0.784420
            3  0.215897  0.084917
            4  1.193555  1.552839
            5 -0.077118 -0.208098
            6 -0.408530 -0.049245
            7 -0.862495 -0.503211
            
            

            到此这篇关于Pandas中GroupBy具体用法详解的文章就介绍到这了,更多相关Pandas GroupBy内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

            0

            精彩评论

            暂无评论...
            验证码 换一张
            取 消