开发者

Python利用三层神经网络实现手写数字分类详解

开发者 https://www.devze.com 2022-12-05 13:39 出处:网络 作者: 椰麦吸
目录前言一、神经网络组成二、代码实现1.引入库2.导入数据集3.全连接层4.ReLU激活函数层5.Softmax损失层6.网络训练与推断模块三、代码debug四、结果展示补充前言
目录
  • 前言
  • 一、神经网络组成
  • 二、代码实现
    • 1.引入库
    • 2.导入数据集
    • 3.全连接层
    • 4.ReLU激活函数层
    • 5.Softmax损失层
    • 6.网络训练与推断模块
  • 三、代码debug
    • 四、结果展示
      • 补充

        前言

        本文做的是基于三层神经网络实现手写数字分类,神经网络设计是设计复杂深度学习算法应用的基础,本文将介绍如何设计一个三层神经网络模型来实现手写数字分类。首先介绍如何利用高级编程语言python搭建神经网络训练和推断框架来实现手写数字分类的训练和使用。

        本文实验文档下载

        一、神经网络组成

        一个完整的神经网络通常由多个基本的网络层堆叠而成。本实验中的三层全连接神经网络由三个全连接层构成,在每两个全连接层之间会插入ReLU激活函数引入非线性变换,最后使用Softmax层计算交叉嫡损失,如下图所示。因此本实验中使用的基本单元包括全连接层、ReLU激活函数、Softmax损失函数。

        Python利用三层神经网络实现手写数字分类详解

        二、代码实现

        1.引入库

        import numpy as np
        import struct
        import os
        

        2.导入数据集

        MNIST_DIR = "mnist_data"
        TRAIN_DATA = "train-images-idx3-ubyte"
        TRAIN_LABEL = "train-labels-idx1-ubyte"
        TEST_DATA = "t10k-images-idx3-ubyte"
        TEST_LABEL = "t10k-labels-idx1-ubyte"
        

        数据集链接

        数据集下载后一定记得解压

        3.全连接层

        class FullyConnectedLayer(object):
            def __init__(self, num_input, num_output):  # 全连接层初始化
                self.num_input = num_input
                self.num_output = num_output
            def init_param(self, std=0.01):  # 参数初始化
                self.weight = np.random.normal编程客栈(loc=0, scale=std, size=(self.num_input, self.num_output))
                self.bias = np.zeros([1, self.num_output])
            def forward(self, input):  # 前向传播计算
                self.input = input
                self.output = np.dot(self.input,self.weight)+self.bias
                return self.output
            def backward(self, top_diff):  # 反向传播的计算
                self.d_weight =np.dot(self.input.T,top_diff) 
                self.d_bias = top_diff #
                bottom_diff = np.dot(top_diff,self.weight.T) 
                return bottom_diff
            def update_param(self, lr):  # 参数更新
                self.weight = self.weight - lr * self.d_weight   
                self.bias = self.bias - lr * self.d_bias    
            def load_param(self, weight, bias):  # 参数加载
                assert self.weight.shape == weight.shape
                assert self.bias.shape == bias.shape
                self.weight = weight
                self.bias = bias
            def save_param(self):  # 参数保存
                return self.weight, self.bias
        

        4.ReLU激活函数层

        class ReLULayer(object):
            def forward(self, input):  # 前向传播的计算
                self.input = input
                output = np.maximum(self.input,0)  
                return output
            def backward(self, top_diff):  # 反向传播的计算
                b = self.input
                b[b>0] =1
                b[b<0] = 0
                bottom_diff = np.multiply(b,top_diff)
                return bottom_diff
        

        5.Softmax损失层

        class SoftmaxLossLayer(object):
            def forward(self, input):  # 前向传播的计算
                input_max = np.max(input, axis=1, keepdims=True)
                input_exp = np.exp(input- input_max)wAFvuAAY#(64,10)
                partsum = np.sum(input_exp,axis=1)
                sum = np.tile(partsum,(10,1))
                self.prob = input_exp / sum.T
                return self.prob
            def get_loss(self, label):   # 计算损失
                self.batchwww.cppcns.com_size = self.prob.shape[0]
                self.label_onehot = np.zeros_like(self.prob)
                self.label_onehot[np.arange(self.batch_size), label] = 1.0
                loss = -np.sum(self.label_onehot*np.log(self.prob)) / self.batch_size
                return loss
            def backward(self):  # 反向传播的计算
                bottom_diff = (self.prob - self.label_onehot)/self.batch_size
                return bottom_diff
        

        6.网络训练与推断模块

        class MNIST_MLP(object):
            def __init__(self, batch_size=64, input_size=784, hidden1=32, hidden2=16, out_classes=10, lr=0.01, max_epoch=1,print_iter=100):
                self.batch_size = batch_size
                self.input_size = input_size
                self.hidden1 = hidden1
                self.hidden2 = hidden2
                self.out_classes = out_classes
                self.lr = lr
                self.max_epoch = max_epoch
                self.print_iter = print_iter
        
            def shuffle_data(self):
                np.random.shuffle(self.train_data)
        
            def build_model(self):  # 建立网络结构
                self.fc1 = FullyConnectedLayer(self.input_size, self.hidden1)
                self.relu1 = ReLULayer()
                self.fc2 = FullyConnectedLayer(self.hidden1, self.hidden2)  
                self.relu2 = ReLULayer()  
                self.fc3 = FullyConnectedLayer(self.hidden2, self.out_classes)
                self.softmax = SoftmaxLossLayer()
                self.update_layer_list = [self.fc1, self.fc2, self.fc3]
        
            def init_model(self):
                for layer in self.update_layer_list:
                    layer.init_param()
        
            def forward(self, input):  # 神经网络的前向传播
                h1 = self.fc1.forward(input)
                h1 = self.relu1.forward(h1)
                h2 = self.fc2.forward(h1)  
                h2 = self.relu2.forward(h2)  
                h3 = self.fc3.forward(h2)  
                self.prob = self.softmax.forward(h3)
                return self.prob
        
            def backward(self):  # 神经网络的反向传播
                dloss = self.softmax.backward()
                dh2 = self.fc3.backward(dloss)  
                dh2 = self.relu2.backward(dh2)  
                dh1 = self.fc2.backward(dh2)
                dh1 = self.relu1.backward(dh1)  
                dh1 = self.fc1.backward(dh1)
        
            def update(self, lr):
                for layer in self.update_layer_list:
                    layer.update_param(lr)
        
            def load_mnist(self, file_dir, is_images='True'):
                bin_file = open(file_dir, 'rb')
                bin_data = bin_file.read()
                bin_file.close()
                if is_images:
                    fmt_header = '>iiii'
                    magic, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, 0)
                else:
                    fmt_header = '>ii'
                    magic, num_images = struct.unpack_from(fmt_header, bin_data, 0)
                    num_rows, num_cols = 1, 1
                data_size = num_images * num_rows * num_cols
                mat_data = struct.unpack_from('>' + str(data_size) + 'B', bin_data, struct.calcsize(fmt_header))
                mat_data = np.reshape(mat_data, [num_images, num_rows * num_cols])
                return mat_data
        
            def load_data(self):
                train_images = self.load_mnist(os.path.join(MNIST_DIR, TRAIN_DATA), True)
                train_labels = self.load_mnist(os.path.join(MNIST_DIR, TRAIN_LABEL), False)
                test_images = self.load_mnist(os.path.join(MNIST_DIR, TEST_DATA), True)
                test_labels = self.load_mnist(os.path.join(MNIST_DIR, TEST_LABEL), False)
                self.train_data = np.append(train_images, train_labels, axis=1)
                self.test_data = np.append(test_images, test_labels, axis=1)
        
        
            def load_model(self, param_dir):
                params = np.load(param_dir).item()
                self.fc1.load_param(params['w1'], params['b1'])
                self.fc2.load_param(params['w2'], params['b2'])
                self.fc3.load_param(params['w3'], params['b3'])
        
            def save_model(self, param_dir):
                params = {}
                params['w1'], params['b1'] = self.fc1.save_param()
                params['w2'], params['b2'] = self.fc2.save_param()
                params['w3'], params['b3'] = self.fc3.save_param()
                np.save(param_dir, params)
        
            def train(self):
                max_batch_1 = self.train_data.shape[0] / self.batch_size
                max_batch = int(max_batch_1)
                for idx_epoch in range(self.max_epoch):
                    mlp.shuffle_data()
                    for idx_batch in range(max_batch):
                        batch_images = self.train_data[idx_batch * self.batch_size:(idx_batch + 1) * self.batch_size, :-1]
                        batch_labels = self.train_data[idx_batch * self.batch_size:(idx_batch + 1) * self.batch_size, -1]
                        prob = self.forward(batch_images)
                        loss = self.softmax.get_loss(batch_labels)
                        self.backward()
                        self.update(self.lr)
                        if idx_batch % self.print_iter == 0:
                            print('Epoch %d, iter %d, loss: %.6f' % (idx_epoch, idx_batch, loss))
        
            def evaluate(self):
                pred_results = np.zeros([self.test_data.shape[0]])
                for idx in range(int(self.test_data.shape[0] / self.batch_size)):
                    batch_images = self.test_data[idx * self.batch_size:(id编程客栈x + 1) * self.batch_size, :-1]
                    prob = self.forward(batch_images)
                    pred_labels = np.argmax(prob, axis=1)
                    pred_results[idx * self.batch_size:(idx + 1) * self.batch_size] = pred_labels
                accuracy = np.mean(pred_results == self.test_data[:, -1])
                print('Accuracy in test set: %f' % accuracy)
        

        7.完整流程

        if __name__ == '__main__':
            h1, h2, e = 128, 64, 20
            mlp = MNIST_MLP(hidden1=h1, hidden2=h2,max_epoch=e)
            mlp.load_data()
            mlp.build_model()
            mlp.init_model()
            mlp.train()
            mlp.save_model('mlp-%d-%d-%depoch.npy' % (h1,h2,e))
            mlp.load_model('mlp-%d-%d-%depoch.npy' % (h1, h2, e))
            mlp.evaluate()
        

        三、代码debug

        pycharm在初次运行时,会在以下代码报错:

        mlp.load_model('mlp-%d-%d-%depoch.npy' % (h1, h2, e))
        

        ValueError: Object arrays cannot be loaded when allow_pickle=False

        经过上网查看原因后,发现是numpy版本太高引起

        解决方法:

        点击报错处,进入源代码(.py),注释掉693行:

        #if not allow_pickle:
            #raise ValueError("Object arrays cannot be loaded when "
                           #  "allow_pickle=False")
         
            # Now read the actual data.
            if dtype.hasobject:
                # The array contained Python objects. We need to unpickle the data.
                #if not allow_pickle:
                    #raise ValueError("Object arrays cannot be loaded when "
                                   #  "allow_pickle=False")
                if pickle_kwargs is None:
                    pickle_kwargs = {}
                try:
                    array = pickle.load(fp, **pickle_kwargs)
                except UnicodeError as err:
                    if sys.version_info[0] >= 3:
                        # Friendlier error message
        

        四、结果展示

        在不改变网络结构的条件下我通过自行调节参数主要体现在:

        if __name__ == '__main__':
            h1, h2, e = 128, 64, 20
        class MNIST_MLP(object):
            def __init__(self, batch_size=64, input_size=784, hidden1=32, hidden2=16, out_classes=10, lr=0.01, max_epoch=1,print_iter=100):
        

        为了提高准确率,当然你可以从其他方面进行修改,以下是我得出的输出结果:

        Python利用三层神经网络实现手写数字分类详解

        补充

        ValueError: Object arrays cannot be loaded when allow_pickle=False解决方案

        在读.npz文件时报下面错误:

        population_data=np.load("./data/populations.npz")
        print(population_data.files)#里面有两个数组   data  feature_names
        data=population_data['data']
        print(data)
        print(population_data['feature_names'])

        报错:

        ['data', 'feature_names']
        Traceback (most recent call last):
          File "E:/pycharm file/使用scikit-learn构建模型/构建一元线性模型.py", line 32, in <module>
            data=population_data['data']
          File "E:\pycharm file\venv\lib\site-packages\numpy\lib\npyio.py", line 262, in __getitem__
            pickle_kwargs=self.pickle_kwargs)
          File "E:\pycharm file\venv\lib\site-packages\numpy\lib\format.py", line 692, in read_array
            raise ValueError("Object arrays cannot be loaded when "
        ValueError: Object arrays cannot be loaded when allow_pickle=False

        报错为:numpy版本太高,我用的是1.16.3,应该降级为1.16.2

        两种解决方案:

        Numpy 1.16.3几天前发布了。从发行版本中说明:“函数np.load()和np.lib.forma编程客栈t.read_array()采用allow_pickle关键字,现在默认为False以响应CVE-2019-6446 < nvd.nist.gov/vuln/detail / CVE-2019-6446 >“。降级到1.16.2对我有帮助,因为错误发生在一些library内部

        第一种:点击报错处,进入源代码(.py),注释掉693行:

        #if not allow_pickle:
            #raise ValueError("Object arrays cannot be loaded when "
                           #  "allow_pickle=False")
         
            # Now read the actual data.
            if dtype.hasobject:
                # The array contained Python objects. We need to unpickle the data.
                #if not allow_pickle:
                    #raise ValueError("Object arrays cannot be loaded when "
                                   #  "allow_pickle=False")
                if pickle_kwargs is None:
                    pickle_kwargs = {}
                try:
                    array = pickle.load(fp, **pickle_kwargs)
                except UnicodeError as err:
                    if sys.version_info[0] >= 3:
                        # Friendlier error message

        修改后成功解决了问题,但改掉源码不知道会不会有后遗症

        第二种:降级numpy版本

        pip install numpy==1.16.2

        上述两种方法都可以成功解决报错问题

        以上就是Python利用三层神经网络实现手写数字分类详解的详细内容,更多关于Python 的资料请关注我们其它相关文章!

        0

        精彩评论

        暂无评论...
        验证码 换一张
        取 消

        关注公众号