开发者

python机器学习使数据更鲜活的可视化工具Pandas_Alive

开发者 https://www.devze.com 2022-12-05 11:23 出处:网络 作者: 网络整理
目录安装方法使用说明支持示例展示水平条形图垂直条形图比赛条形图饼图多边形地理空间图多个图表总结数据动画可视化制作在日常工作中是非常实用的一项技能。目前支持动画可视化的库主要以Matplotlib-Animation为主,
目录
  • 安装方法
  • 使用说明
  • 支持示例展示
    • 水平条形图
    • 垂直条形图比赛
    • 条形图
    • 饼图
    • 多边形地理空间图
    • 多个图表
  • 总结

    数据动画可视化制作在日常工作中是非常实用的一项技能。目前支持动画可视化的库主要以Matplotlib-Animation为主,其特点为:配置复杂,保存动图容易报错。

    安装方法

    pip install pandas_alive  # 或者
    conda install pandas_alive -c conda-forge
    

    使用说明

    pandas_alive 的设计灵感来自 bar_chart_race,为方便快速进行动画可视化制作,在数据的格式上需要满足如下条件:

    • 每行表示单个时间段
    • 每列包含特定类别的值
    • 索引包含时间组件(可选)

    python机器学习使数据更鲜活的可视化工具Pandas_Alive

    支持示例展示

    水平条形图

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.plot_animated(filename='examples/perpendicular-example.gif',perpendicular_bar_func='mean')
    

    垂直条形图比赛

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.plot_animated(filename='examples/example-barv-chart.gif',orientation='v')
    

    条形图

    与时间与 x 轴一起显示的折线图类似

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.sum(axis=1).fillna(0).plot_animated(filename='examples/example-bar-chart.gif',kind='bar',
            period_label={'x':0.1,'y':0.9},
            enable_progress_bar=True, steps_per_period=2, interpolate_period=True, period_length=200
    )
    

    饼图

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.plot_animated(filename='examples/example-pie-chart.gif',kind="pie",rotatelabels=True,period_label={'x':0,'y':0})
    

    多边形地理空间图

    import geopandas
    import pandas_alive
    import contextily
    gdf = geopandas.read_file('data/italy-covid-region.gpkg')
    gdf.index = gdf.region
    gdf = gdf.drop('region',axis=1)
    map_chart = gdf.plot_animated(filename='examples/example-geo-polygon-chart.gif',basemap_format={'source':contextily.providers.Stamen.Terrain})
    

    多个图表

    pandas_alive 支持单个可视化中的多个动画图表。

    示例1

    import pandas_alive
    urban_df = pandas_alive.load_dataset("urban_pop")
    animated_line_chart = (
        urban_df.sum(axis=1)
        .pct_change()
        .fillna(method='bfill')
        .mul(100)
        .plot_animated(kind="line", title="Total % Change in Population",period_label=False,add_legend=False)
    )
    animated_bar_chart = urban_df.plot_animated(n_visible=10,title='Top 10 Populous Countries',period_fmt="%Y")
    pandas_alive.animate_multiple_plots('examples/example-bar-and-line-urban-chart.gif',[animated_bar_chart,animated_line_chart],
        title='Urban Population 1977 - 2018', adjust_subplot_top=0.85, enable_progress_bar=True)
    

    示例2

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    animated_line_chart = covid_df.diff().fillna(0).plot_animated(kind='line',period_label=False,add_legend=False)
    animated_bar_chart = covid_df.plot_animated(n_visible=10)
    pandas_alive.animate_multiple_plots('examples/example-bar-and-line-chart.gif',[animated_bar_chart,animated_line_chart],
        enable_progress_bar=True)
    

    示例3

    import pandas_alive
    import pandas as pd
    data_raw = pd.read_csv(
      编程客栈  "https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Long%20run%20life%20expectancy%20-www.cppcns.com%20Gapminder%2C%20UN/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN.csv"
    )
    list_G7 = [
        "Canada",
        "France",
        "Germany",
        "Italy",
        "Japan",
        "United Kingdom",
        "United States",
    ]
    data_raw = data_raw.pivot(
        index="Year", columns="Entity", values="Life expectancy (Gapminder, UN)"
    )
    data = pd.DataFrame()
    data["Year"] = data_raw.reset_index()["Year"]
    for country in list_G7:
        data[country] = data_raw[country].values
    data = data.fillna(method="pad")
    data = data.fillna(0)
    data = data.set_index("Year").loc[1900:].reset_index()
    data["Year"] = pd.to_datetime(data.reset_index()["Year"].astype(str))
    data = data.set_index("Year")
    animated_bar_chart = data.plot_anwww.cppcns.comimated(
        period_fmt="%Y",perpendicular_bar_func="mean", period_length=200,fixed_max=True
    )
    animated_line_chart = data.plot_animated(
        kind="line", period_fmt="%Y", period_length=200,fixed_max=True
    )
    pandas_alive.animate_multiple_plots(
        "examples/life-expectancy.gif",
        plots=[animated_bar_chart, animated_line_chart],
        title="Life expectancy in G7 countries up to 2015",
        adjust_subplot_left=0.2, adjust_subplot_top=0.9, enable_progress_bar=True
    )
    

    示例4

    import geopandas
    import pandas as pd
    import pandas_alive
    import contextily
    import matplotlib.pyplot as plt
    import urllib.request, json
    with urllib.request.urlopen(
        "https://data.nsw.gov.au/data/api/3/action/package_show?id=aefcde60-3b0c-4bc0-9af1-6fe652944ec2"
    ) as url:
        data = json.loads(url.read().decode())
    # Extract url to csv component
    covid_nsw_data_url = data["result"]["resources"][0]["url"]
    # Read csv from data API url
    nsw_covid = pd.read_csv(covid_nsw_data_url)
    postcode_dataset = pd.read_csv("data/postcode-data.csv")
    # Prepare data from NSW health dataset
    nsw_covid = nsw_covid.fillna(9999)
    nsw_covid["postcode"] = nsw_covid["postcode"].astype(int)
    grouped_df = nsw_covid.groupby(["notification_date", "postcode"]).size()
    grouped_df = pd.DataFrame(grouped_df).unstack()
    grouped_df.columns = grouped_df.columns.droplevel().astype(str)
    grouped_df = grouped_df.fillna(0)
    grouped_df.index = pd.to_datetime(grouped_df.index)
    cases_df = grouped_df
    # Clean data in postcode dataset prior to matching
    grouped_df = grouped_df.T
    postcode_dataset = postcode_dataset[postcode_dataset['Longitude'].notna()]
    postcode_dataset = postcode_dataset[postcode_dataset['Longitude'] != 0]
    postcode_dataset = postcode_dataset[postcode_dataset['Latitude'].notna()]
    postcode_dataset = postcode_dataset[postcode_dataset['Latitude'] != 0]
    postcode_dataset['Postcode'] = postcode_dataset['Postcode'].astype(str)
    
    # Build GeoDataFrame from Lat Long dataset and make map chart
    grouped_df['Longitude'] = grouped_df.index.map(postcode_dataset.set_index('Postcode')['Longitude'].to_dict())
    grouped_df['Latitude'] = grouped_df.index.map(postcode_dataset.set_index('Postcode')['Latitude'].to_dict())
    gdf = geopandas.GeoDataFrame(
        grouped_df, geometry=geopandas.points_from_xy(grouped_df.Longitude, grouped_df.Latitude),crs="EPSG:4326")
    gdf = gdf.dropna()
    
    # Prepare GeoDataFrame for writing to geopackage
    gdf = gdf.drop(['Longitude','Latitude'],axis=1)
    gdf.columns = gdf.columns.astype(str)
    gdf['postcode'] = gdf.index
    gdf.to_file("data/nsw-covid19-cases-by-postcode.gpkg", layer='nsw-postcode-covid', driver="GPKG")
    
    # Prepare GeoDataFrame for plotting
    gdf.index = gdf.postcode
    gdf = gdf.drop('postcode',axis=1)
    gdf = gdf.to_crs("EPSG:3857") #Web Mercator
    
    map_chart = gdf.plot_animated(basemap_format={'source':contextily.providers.Stamen.Terrain},cmap='cool')
    cases_df.to_csv('data/nsw-covid-cases-by-postcode.csv')
    
    from datetime import datetime
    
    bar_chart = cases_df.sum(axis=1).plot_animated(
        kind='line',
        label_events={
            'Ruby Princess Disembark':datetime.strptime("19/03/2020", "%d/%m/%Y"),
            'Lockdown':datetime.strptime("31/03/2020", "%d/%m/%Y")
        },
        fill_under_line_color="blue",
        add_legend=False
    )
    
    map_chart.ax.set_title('Cases by Location')
    grouped_df = pd.read_csv('data/nsw-covid-cases-by-postcode.csv', index_col=0, parse_dates=[0])
    line_chart = (
        grouped_df.sum(axis=1)
        .cumsum()
        .fillna(0)
        .plot_anwww.cppcns.comimated(kind="line", period_label=False, title="Cumulative Total Cases", add_legend=False)
    )
    def current_total(values):
        total = values.sum()
        s = f'Total : {int(total)}'
        return {'x': .85, 'y': .2, 's': s, 'ha': 'right', 'size': 11}
    race_chart = grouped_df.cumsum().plot_animated(
        n_visible=5, title="Cases by Postcode", period_label=False,period_summary_func=current_total
    )
    
    import time
    timestr = time.strftime("%d/%m/%Y")
    plots = [bar_chart, line_chart, map_chart, race_chart]
    from matplotlib import rcParams
    rcParams.update({"figure.autolayout": False})
    # make sure figures are `Figure()` instances
    figs = plt.Figure()
    gs = figs.add_gridspec(2, 3, hspace=0.5)
    f3_ax1 = figs.adhttp://www.cppcns.comd_subplot(gs[0, :])
    f3_ax1.set_title(bar_chart.title)
    bar_chart.ax = f3_ax1
    
    f3_ax2 = figs.add_subplot(gs[1, 0])
    f3_ax2.set_title(line_chart.title)
    line_chart.ax = f3_ax2
    f3_ax3 = figs.add_subplot(gs[1, 1])
    f3_ax3.set_title(map_chart.title)
    map_chart.ax = f3_ax3
    f3_ax4 = figs.add_subplot(gs[1, 2])
    f3_ax4.set_title(race_chart.title)
    race_chart.ax = f3_ax4
    timestr = cases_df.index.max().strftime("%d/%m/%Y")
    figs.suptitle(f"NSW COVID-19 Confirmed Cases up to {timestr}")
    pandas_alive.animate_multiple_plots(
        'examples/nsw-covid.gif',
        plots,
        figs,
        enable_progress_bar=True
    )

    总结

    Pandas_Alive 是一款非常好玩、实用的动画可视化制图工具,以上就是python机器学习使数据更鲜活的可视化工具Pandas_Alive的详细内容,更多关于python机器学习可视化工具Pandas_Alive的资料请关注我们其它相关文章!

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消