开发者

SpringBoot集成Redis向量数据库实现相似性搜索功能

开发者 https://www.devze.com 2024-09-26 10:48 出处:网络 作者: HBLOG
目录1.什么是Redis向量数据库?2.向量检索(Vector Search)的核心原理匹配的原理:关键点:具体过程1. 向量化数据:2. 搜索时的向量生成:3. 相似度匹配:4. 返回匹配的文档:3.环境搭建4.代码工程实验目标pom.XMLc
目录
  • 1.什么是Redis向量数据库?
  • 2.向量检索(Vector Search)的核心原理
    • 匹配的原理:
    • 关键点:
    • 具体过程
      • 1. 向量化数据:
      • 2. 搜索时的向量生成:
      • 3. 相似度匹配:
      • 4. 返回匹配的文档:
    • 3.环境搭建
      • 4.代码工程
        • 实验目标
        • pom.XML
        • controller
        • configuration
        • service
        • 代码仓库
      • 5.测试

      1.什么是Redis向量数据库?

      Redis 是一个开源(BSD 许可)的内存数据结构存储,用作数据库、缓存、消息代理和流式处理引擎。Redis 提供数据结构,例如字符串、哈希、列表、集合、带范围查询的有序集合、位图、超对数日志、地理空间索引和流。

      Redis 搜索和查询 扩展了 Redis OSS 的核心功能,并允许您将 Redis 用作向量数据库

      • 在哈希或 jsON 文档中存储向量和关联的元数据
      • 检索向量
      • 执行向量搜索

      2.向量检索(Vector Search)的核心原理

      向量检索(Vector Search)的核心原理是通过将文本或数据表示为高维向量,并在查询时根据向量的相似度进行搜索。在你的代码中,向量检索过程涉及以下几步:

      匹配的原理:

      • 检索的核心是将文本或数据转换成向量,在高维向量空间中查找与查询最相似的向量。
      • 在存储数据时将指定的字段通过嵌入模型生成了向量。
      • 在检索时,查询文本被向量化,然后与 Redis 中存储的向量进行相似度比较,找到相似度最高的向量(即相关的文档)。

      关键点:

      • 嵌入模型 将文本转换成向量。
      • 相似度计算 通过余弦相似度或欧几里得距离来度量相似性。
      • Top K 返回相似度最高的 K 个文档。

      具体过程

      1. 向量化数据:

      当你将 JSON 中的字段存入 Redis 时,向量化工具(例如 vectorStore)会将指定的字段转换为高维向量。每个字段的内容会通过某种嵌入模型(如 Word2Vec、BERT、OpenAI Embeddings 等)转换成向量表示。每个向量表示的是该字段内容的语义特征。

      2. 搜索时的向量生成:

      当执行 SearchRequest.query(message) 时,系统会将输入的 message 转换为一个查询向量。这一步是通过同样的嵌入模型,将查询文本转换为与存储在 Redis 中相同维度的向量。

      3. 相似度匹配:

      vectorStore.similaritySearch(request) 函数使用了一个向量相似度计算方法来查找最相似的向量。这通常是通过 余弦相似度欧几里得距离 来度量查询向量和存储向量之间的距离。然后返回与查询最相似的前 K 个文档,即 withTopK(topK) 所指定的 K 个最相关的结果。

      4. 返回匹配的文档:

      匹配的结果是根据相似度得分排序的 List<Document>。这些文档是你最初存储在 Redis 中的记录,包含了 JSON 中指定的字段。

      3.环境搭建

      version: '3'
      services:
        redis-stack:
          image: redis/redis-stack
          ports:
            - 6379:6379
      
        redis-insight:
          image: redislabs/redisinsight:latest
          ports:
            - 5540:5540
      

      Run following command:

      docker-compose up -d
      

      访问 http://localhost:5540

      4.代码工程

      实验目标

      实现文件数据向量化到redis,并进行相似性搜索

      pom.xml

      <?xml version="1.0" encoding="UTF-8"?>
      <project xmlns="http://maven.apache.org/POM/4.0.0"
               xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
               xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
          <parent>
              <groupId>org.springframework.boot</groupId>
              <artifactId>spring-boot-starter-parent</artifactId>
              <version>3.2.1</version>
              <relativePath /> <!-- lookup parent from repository -->
          </parent>
          <modelVersion>4.0.0</modelVersion>
      
          <artifactId>RedisVectorStore</artifactId>
      
          <properties>
              <maven.compiler.source>17</maven.compiler.source>
              <maven.compiler.target>17</maven.compiler.target>
              <spring-ai.version>0.8.1</spring-ai.version>
          </properties>
          <dependencies>
              <dependency>
                  <groupId>org.springframework.boot</groupId>
                  <artifactId>spring-boot-starter-web</artifactId>
              </dependency>
      
              <dependency>
                  <groupId>org.springframework.boot</groupId>
                  <artifactId>spring-boot-autoconfigure</artifactId>
              </dependency>
              <dependency>
                  <groupId>org.springframework.boot</groupId>
                  <artifactId>spring-boot-starter-test</artifactId>
                  <scope>test</scope>
              </dependency>
              <dependency>
                  <groupId>org.springframework.ai</groupId>
                  <artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
                  <version>${spring-ai.version}</version>
              </dependency>
              <dependency>
                  <groupId>org.springframework.ai</groupId>
                  <artifactId>spring-ai-redis-spring-boot-starter</artifactId>
                  <version>${spring-ai.version}</version>
              </dependency>
              <dependency>
                  <groupId>redis.clients</groupId>
                  <artifactId>jedis</artifactId>
                  <version>5.1.0</version>
              </dependency>
          </dependencies>
          <repositories>
              <repository>
                  <id>spring-milestones</id>
                  <name>Spring Milestones</name>
                  <url>https://repo.spring.io/milestone</url>
                  <snapshots>
                      <enabled>false</enabled>
                  </snapshots>
              </repository>
              <repository>
                  <id>spring-snapshots</id>
                  <name>Spring Snapshots</name>
                  <url>https://repo.spring.io/snapshot</url>
                  <releases>
                      <enabled>false</enabled>
                  </releases>
              </repository>
          </repositories>
          <pluginRepositories>
              <pluginRepository>
                  <id>spring-milestones</id>
                  <name>Spring Milestones</name>
                  <url>https://repo.spring.io/milestone</url>
                  <snapshots>
                      <enabled>false</enabled>
                  </snapshots>
              </pluginRepository>
              <pluginRepository>
                  <id>spring-snapshots</id>
                  <name>Spring Snapshots</name>
                  <url>https://repo.spring.io/snapshot</url>
                  <releases>
                      <enabled>false</enabled>
                  </releases>
              </pluginRepository>
          </pluginRepositories>
      </project>
      

      controller

      package com.et.controller;
      
      import com.et.service.SearchService;
      imphpport org.springframework.beans.factory.annotation.Autowired;
      import org.springframework.web.bind.annotation.RequestMapping;
      import org.springframework.web.bind.annotation.RestController;
      import com.et.service.SearchService;
      import Java.util.HashMap;
      import java.util.Map;
      
      @RestController
      public class HelloWorldController {
          @Autowired
          SearchService searchService;
          @RequestMapping("/hello")
          public Map<String, Object> showHelloWorld(){
              Map<String, Object> map = new HashMap<>();
              map.put("msg", searchService.retrieve("beer"));
              return map;
          }
      }
      

      configuration

      加载文件数据到并将数据向量化到redis

      JsonReader loader = new JsonReader(file, KEYS);
      

      JsonReader 和 VectorStore 实现是将 KEYS 中指定的多个字段拼接在一起,生成一个统一的文本表示,然后通过嵌入模型将这些字段的组合文本转换为一个单一的向量,那么这里就是将多个字段组合成 一个综合向量。并将其处理后存入 Redis。

      package com.et.config;
      
      import org.slf4j.Logger;
      import org.slf4j.LoggerFactory;
      import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
      import org.springframework.ai.reader.JsonReader;
      import org.springframework.ai.vectorstore.RedisVectorStore;
      import org.springframework.beans.factory.annotation.Value;
      import org.springframework.boot.ApplicationArguments;
      import org.springframework.boot.ApplicationRunner;
      import org.springframework.core.io.InputStreamResource;
      import org.springframework.core.io.Resource;
      import org.springframework.stereotype.Component;
      
      import java.util.Map;
      import java.util.zip.GZIPInputStream;
      
      @Component
      public class DataLoader implements ApplicationRunner {
      
         private static final Logger logger = LoggerFactory.getLogger(DataLoader.class);
      
         private static final String[] KEYS = { "name", "abv", "ibu", "description" };
      
         @Value("classpath:/data/beers.json.gz")
         private Resource data;
      
         private final RedisVectorStore vectorStore;
      
         private final RedisVectorStoreProperties properties;
      
         public DataLoader(RedisVectorStore vectorStore, RedisVectorStoreProperties properties) {
            this.vectorStore = vectorStore;
            this.properties = properties;
         }
      
         @Override
         public void run(ApplicationArguments args) throws Exception {
            Map<String, Object> indexInfo = vectorStore.getJedis().ftInfo(properties.getIndex());
            Long sss= (Long) indexInfo.getOrDefault("num_docs", "0");
            int numDocs=sss.intValue();
            if (numDocs > 20000) {
               logger.info("Embeddings already loaded. Skipping");
               return;
            }
            Resource file = data;
            if (data.getFilename().endsWith(".gz")) {
               GZIPInputStream inputStream = new GZIPInputStream(data.getInputStream());
               file = new InputStreamResource(inputStream, "beers.json.gz");
            }
            logger.info("Creating Embeddings...");
            // tag::loader[]
            // Create a JSON reader with fields relevant to our use case
            JsonReader loader = new JsonReader(file, KEYS);
            // Use the autowired VectorStore to insert the documents into Redis
            vectorStore.add(loader.get());
            // end::loader[]
            logger.info("Embeddings created.");
         }
      
      }
      

      配置redis vectorStore

      package com.et.config;
      
      import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
      import org.springframework.ai.chat.ChatClient;
      import org.springframework.ai.document.MetadataMode;
      import org.springframework.ai.transformers.TransformersEmbeddingClient;
      import org.springframework.ai.vectorstore.RedisVectorStor编程客栈e;
      import org.springframework.ai.vectorstore.RedisVectorStore.RedisVectorStoreConfig;
      import org.springframework.ai.vectorstore.VectorStore;
      import org.springframework.context.annotation.Bean;
      import org.springframework.context.annotation.Configuration;
      
      @Configuration
      public class RedisConfiguration {
      
          @Bean
          TransformersEmbeddingClient transformersEmbeddpythoningClient() {
              return new TransformersEmbeddingClient(MetadataMode.EMBED);
          }
      
          @Bean
          VectorStore vectorStore(TransformersEmbeddingClient embeddingClient, RedisVectorStoreProperties properties) {
              var config = RedisVectorStoreConfig.builder().withURI(properties.getUri()).withIndexName(properties.getIndex())
                      .withPrefix(properties.getPrefix()).build();
              RedisVectorStore vectorStore = new RedisVectorStore(config, embeddingClient);
              vectorStore.afterPropertiesSet();
              return vectorStore;
          }
      
      
      }
      

      service

      查询时,查询文本也会生成一个整体向量,与存储的综合向量进行匹配。

      package com.et.service;
      
      
      import org.springframework.ai.document.Document;
      import org.springframework.ai.vectorstore.SearchRequest;
      import org.springframework.ai.vectorstore.VectorStore;
      import org.springframework.beans.factory.annotation.Autowired;
      import org.springframework.beans.factory.annotation.Value;
      import org.springframework.stereotype.Service;
      
      import java.util.List;
      
      @Service
      public class SearchService {
      
      
         @Value("${topk:10}")
         private int topK;
      
         @Autowired
         private  VectorStore vectorStore;
      
      
      
         public List<Document> retrieve(String message) {
            SearchRequest request = SearchRequest.query(message).withTopK(topK);
            // Query Redis for the top K documents most relevant to the input message
            List<Document> docs = vectorStore.similaritySearch(request);
      
            return docs;
         }
      
      }
      

      只是一些关键代码,所有代码请参见下面代码仓库

      代码仓库

      • https://github.com/Harries/springboot-demo(RedisVectorStore)

      5.测试

      启动Spring Boot应用程序,查看日志

       . ____ _ __ _ _
       /\\ / ___'_ __ _ _(_python)_ __ __ _ \ \ \ \
      ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
       \\/ ___)| |_)| | | | | || (_| | ) ) ) )
       ' |____| .__|_| |_|_| |_\__, | / / / /
       =========|_|==============|___/=/_/_/_/
       :: Spring Boot :: (v3.2.1)
      
      2024-09-24T14:03:48.217+08:00 INFO 23996 --- [ main] com.et.DemoApplication : Starting DemoApplication using Java 17.0.9 with PID 23996 (D:\IdeaProjects\ETFramework\RedisVectorStore\target\classes started by Dell in D:\IdeaProjects\ETFramework)
      2024-09-24T14:03:48.221+08:00 INFO 23996 --- [ main] com.et.DemoApplication : No active profile set, falling back to 1 default profile: "default"
      2024-09-24T14:03:49.186+08:00 INFO 23996 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port 8088 (http)
      2024-09-24T14:03:49.199+08:00 INFO 23996 --- [ main] o.apache.catalina.core.StandardService : Starting service [Tomcat]
      2024-09-24T14:03:49.199+08:00 INFO 23996 --- [ main] o.apache.catalina.core.StandardEngine : Starting Servlet engine: [Apache Tomcat/10.1.17]
      2024-09-24T14:03:49.289+08:00 INFO 23996 --- [ main] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext
      2024-09-24T14:03:49.290+08:00 INFO 23996 --- [ main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization completed in 1033 ms
      2024-09-24T14:03:49.406+08:00 WARN 23996 --- [ main] ai.djl.util.cuda.CudaUtils : Failed to detect GPU count: CUDA driver version is insufficient for CUDA runtime version (35)
      2024-09-24T14:03:49.407+08:00 WARN 23996 --- [ main] ai.djl.util.cuda.CudaUtils : Failed to detect GPU count: CUDA driver version is insufficient for CUDA runtime version (35)
      2024-09-24T14:03:49.408+08:00 INFO 23996 --- [ main] ai.djl.util.Platform : Found matching platform from: jar:file:/D:/jar_repository/ai/djl/huggingface/tokenizers/0.26.0/tokenizers-0.26.0.jar!/native/lib/tokenizers.properties
      2024-09-24T14:03:49.867+08:00 INFO 23996 --- [ main] o.s.a.t.TransformersEmbeddingClient : Model input names: input_ids, attention_mask, token_type_ids
      2024-09-24T14:03:49.867+08:00 INFO 23996 --- [ main] o.s.a.t.TransformersEmbeddingClient : Model output names: last_hidden_state
      2024-09-24T14:03:50.346+08:00 INFO 23996 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8088 (http) with context path ''
      2024-09-24T14:03:50.354+08:00 INFO 23996 ---编程客栈 [ main] com.et.DemoApplication : Started DemoApplication in 2.522 seconds (process running for 2.933)
      2024-09-24T14:03:50.364+08:00 INFO 23996 --- [ main] com.et.config.DataLoader : Creating Embeddings...
      2024-09-24T14:03:51.493+08:00 WARN 23996 --- [ main] ai.djl.util.cuda.CudaUtils : Failed to detect GPU count: CUDA driver version is insufficient for CUDA runtime version (35)
      2024-09-24T14:03:51.800+08:00 INFO 23996 --- [ main] ai.djl.pytorch.engine.PtEngine : PyTorch graph executor optimizer is enabled, this may impact your inference latency and throughput. See: https://docs.djl.ai/docs/development/inference_performance_optimization.html#graph-executor-optimization
      2024-09-24T14:03:51.802+08:00 INFO 23996 --- [ main] ai.djl.pytorch.engine.PtEngine : Number of inter-op threads is 6
      2024-09-24T14:03:51.802+08:00 INFO 23996 --- [ main] ai.djl.pytorch.engine.PtEngine : Number of intra-op threads is 6
      2024-09-24T14:04:26.212+08:00 INFO 23996 --- [nio-8088-exec-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring DispatcherServlet 'dispatcherServlet'
      2024-09-24T14:04:26.213+08:00 INFO 23996 --- [nio-8088-exec-1] o.s.web.servlet.DispatcherServlet : Initializing Servlet 'dispatcherServlet'
      2024-09-24T14:04:26.215+08:00 INFO 23996 --- [nio-8088-exec-1] o.s.web.servlet.DispatcherServlet : Completed initialization in 2 ms
      2024-09-24T14:09:48.846+08:00 INFO 23996 --- [ main] com.et.config.DataLoader : Embeddings created.
      

      查看redis是否存在向量化的数据

      SpringBoot集成Redis向量数据库实现相似性搜索功能

      访问http://127.0.0.1:8088/hello 进行0 相似度搜索(top 10),返回得分前10的数据

      SpringBoot集成Redis向量数据库实现相似性搜索功能

      以上就是SpringBoot集成Redis向量数据库实现相似性搜索功能的详细内容,更多关于SpringBoot Redis相似性搜索的资料请关注编程客栈(www.devze.com)其它相关文章!

      0

      精彩评论

      暂无评论...
      验证码 换一张
      取 消

      关注公众号