开发者

pandas中Series和DataFrame的rank方法解析

开发者 https://www.devze.com 2024-09-11 09:26 出处:网络 作者: _吟游诗人
目录pandas中的Series和DataFrame的rank方法刚接触这个方法可能很难理解这句话什么意思呢总结pandas中的Series和DataFrame的rank方法
目录
  • pandas中的Series和DataFrame的rank方法
    • 刚接触这个方法可能很难理解这句话
    • 什么意思呢
  • 总结

    pandas中的Series和DataFrame的rank方法

    rank是将Series或DataFrame的数据进行排序类型的一种方法,不过它并不像sort(含sort_index、sort_values等)那样返回的是排序后的数据,而是当前数据的排名。

    上述很好理解,但是往往可以看到一句话:

    默认情况下,rank是通过“为各组分配一个平均排名”的方式破坏平级关系的

    刚接触这个方法可能很难理解这句话

    那么看下面的例子:

    pandas中Series和DataFrame的rank方法解析

    是不是仍php然很难理解,为什么rank会有小数?

    这时候请再回味编程客栈一下上面那句话,为各组分配一个平均排名。

    什么意思呢

    我们可以自己先拍一下一些没用争议的数字,比如-5最小,其排名为1.0,0其次,因此其排名为2.0,数字2同理,其排名为3.0,这些都没问编程客栈题,但是到了4的时候,我们发现Series中存在两个4,那么根据不同的规则,我们可以说数字4的排名是4.0,但也可以说是5.0,而“为各组分配一个平均排名”就能很好的解释这个4.5的来源了,即取4.0和5.0的平均值,那么对于数字7来说,也是一个道理了,其既可以取6.0,也可以取7.0,这里平均一下,就成了6.5了。

    当然上述全都是默认情况下的排名方式,我们可以根据自己的实际需要对这种排名的方式进行调整,rank函数为我nwlApVm们提供了一个method参数.

    pandas中Series和DataFrame的rank方法解析

    如上图所示,设置为method为first时,对于相同的数据,它会根据数据出现的顺序进行排序。

    其他的method的取值及说明如下:

    pandas中Series和DataFrame的rank方法解析

    同时,我们可以让rank的排名顺序为逆序,这是只需设置ascending = False即可,

    示例如下:

    pandas中Series和DataFrame的rank方法解析

    上述全都是对于Series的操作,而对于DataFrame而言方法是一样的,只是在DataFr编程客栈ame中,我们可以自己选择是在行还是列上进行计算,rank方法中有axis参数,按需设置即可。

    总结

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程客栈(www.devze.com)。

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    关注公众号