目录
- 背景
- 定位内存泄漏
- 第一步:确定是否有内存泄漏
- 第二步:确定内心泄漏的代码块
- 第三步:确定泄漏点
- 总结
背景
上周使用我的python web
框架开发的第二个项目上线了,但是没运行几天机器内存就报警了,8G内存使用了7G,怀疑有内存泄漏,这个项目提供的功能就是一堆机器学习模型,对历史数据进行训练,挑选出最优的5个模型,用作未来数据的预测,所以整个项目有着数据量大,运行时间长的特点,就是把策略的离线工作搬到了线上。
定位内存泄漏
第一步:确定是否有内存泄漏
上pympler
检查是否有内存泄漏,程序入口处初始化该工具
from pympler import tracker,summary,muppy memory_tracker = tracker.SummaryTracker()
接口返回处打印内存差异,观察内存是否有泄漏
memory_tracker.print_diff() # 本次内存和上次内存块的差异
我们用的sanic,所以直接在main.py
文件添加如下代码:
from pympler import tracker,summary,muppy memory_tracker = tracker.SummaryTracker() @app.middleware('request') async def set_request_id(request): log_id = request.headers.get('log-id') threading.currentThread().logid = log_id gc.collect() memory_tracker.print_diff()
然后我们访问接口,多触发几次,不用看前两次,等输出稳定后,如果有内存泄漏是如下输出:
上图显示每次都有4类泄漏对象,一共泄漏约60K的内存
如果没有内存泄漏,没有数据输出
第二步:确定内心泄漏的代码块
我们确定程序有内存泄漏后,就想办法定位到代码块,就是我们自己写的代码,通过一步一步debug
,注释,return
,continue
等方式定位到造成泄漏的代码块,下面的代码块就是遍历所有模型,然后挨个执行训练方法,因为有20多个模型,我不能挨个注释每次对象来定位,卡在这里了。
第三步:确定泄漏点
上tracemalajjoqrTloc
定位泄漏点,python3.7.3
自带,在main.py
中添加如下代码:
tracemalloc.start(25) snapshot = tracemalloc.take_snapshot() @app.middleware('response') async def print_on_response(request, response): global snapshot gc.collect() snapshot1 = tracemalloc.take_snapshot() top_stats = snapshot1.compare_to(snapshot, 'lineno') print("[ Top 10 differences ]") for stat in top_stats[:10]: if stat.size_diff < 0: continue print(stat) snapshot = tracemalloc.take_snapshot()
继续访问接口,多访问几次,输出如下,直接定位到具体泄漏的代码位置
图中所有的泄漏点都定位到pandas
库,但是我用这些文件搜索内存泄漏,都没有搜到相关内存泄漏的问题,所以得寻找谁调用这些地方,以
/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py:859www.devze.com
为例,我们要找到我们写的代码哪里调用触发泄漏点
第四步:打印调用链
看了tracemalloc
文档也没找到打印调用链的方法,后来灵机一动直接在这个文件加了下面代码:
raise Exception("doctorq")
然后在接口里catch异常,添加logging.exception(e)
,然后触发接口,打印堆栈信息:
ERROR:root:doctorq
Traceback (most recent call last): File "/home/doctorq/python-dev/scscore/src/forecasting/forecast.py", line 83, in update_method n_fraction=n_fraction) File "/home/doctorq/python-dev/scscore/src/forecasting/trainer.py", line 113, in training n_fraction=n_fraction) File "/home/doctorq/python-dev/scscore/src/forecasting/trainer.py", line 205, in train_MAChine_learning_model is_train=True).dropna() File &qu编程ot;/home/doctorq/python-dev/scscore/src/feature_engineering/features.py", line 34, in get_feature history_same_periods=history_same_periods, zero_replace=zero_replace) File "/home/doctorq/python-dev/scscore/src/feature_engineering/sale_relate_feature.py", line 65, in get_feature store_and_sku=store_and_sku) File "/home/doctorq/python-dev/scscore/src/feature_engineering/sale_relate_feature.py", line 85, in get_rolling_feature rolling_result = self.get_rolling_result(window, rolling_obj, rolling_types) File "/home/doctorq/python-dev/scscore/src/feature_engineering/sale_relate_feature.py", line 169, in get_rolling_result rolling_result = self.rolling__(rolling_obj, rolling_type) File "/home/doctorq/python-dev/scscore/src/feature_engineering/sale_relate_feature.py", line 190, in rolling__ return rolling_obj.min() File "/home/doctorq/.local/share/vihttp://www.devze.comrtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py", line 1723, in min return super(Rolling, self).min(*args, **kwargs) File "/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py", line 1069, in min return self._apply('roll_min', 'min', **kwargs) File "/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py", line 879, in _apply result = np.apply_along_axis(calc, self.axis, values) File "/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/numpy/lib/shape_base.py", line 380, in apply_along_axis res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs)) File "/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py", line 875, in calc closed=self.closed) File "/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py", line 858, in func&ajjoqrTnbsp; raise Exception("doctorq")Exception: doctorq
定位到我们代码触发点如下:
调用的就是pandas
的Rolling
的一系列方法,然后搜索该方法是否有泄漏问题
第一个链接链接就是说这些方法(rolling.min/max
)有泄漏,pandas rolling max leak memory,
具体因为啥泄漏的,也没时间细究,反正issue
里说回退到0.23.4
是没问题的,那么就回退试试:
pipenv install pandas==0.23.4
然后我们再用pympler
定位有没有内存泄漏,pandas
内存泄漏的问题是修复,剩下来就省memoryview
的小泄漏了,明天继续
总结
定位的过程略耗时,不过经过这么一折腾,也算是有经验了,各种工具一阵堆,泄漏问题确定-定位代码块-定位泄漏点-搜索已知泄漏点-解决掉。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程客栈(www.devze.com)。
精彩评论