在数据量比较大的情况下,数据预处理有时候会非常耗费时间。
可以利用 joblib 中的 Parallel 和 delayed 进行多CPU并行处理
示例如下:
import random import os from glob import glob from tqdm impo编程客栈rt tqdm from joblib import Parallel, delayed import soundfile as sf import pycantonese as pct from opencc import OpenCC cc = OpenCC('s2hk') ######### lJSPeech ########## def process_ljspeech_one_utterance(wav_path, text, mode, save_root): try: tmp = wav_path.split('/') spk = 'LJSpeech-1.1' wname = tmp[-1] tname = wname.replace('.wav','.txt') tex编程客栈t_to_path = f'{save_root}/{mode}/{spk}/{tname}' os.makedirs(os.path.dirname(text_to_path), exist_ok=True) fp = open(text_to_path, 'w') fp.write(text) fp.close() wav_to_path = f'{save_root}/{mode}/{spk}/{wname}' _, fs = sf.read(wav_path) if fs != 16000: cmd = f'sox {wav_path} -r 16000 {wav_to_path}' else: cmd = f'cp {wav_path} {wav_to_path}' os.system(cmd) assert False except BaseException: return wavs_root = 'source_data/LJSpeech/LJSpeech-1.www.devze.com1' data = [] with open(f'{wavs_root}/metadata.csv', 'r') as f: lines = f.readlines() for line in lines: uttid = line.strip().split('|')[0] wav_path = f'{wavs_root}/wavs/{uttid}.wav' text = line.strip().split('|')[2] data.append([wav_path, text]) f.close() valid_data = random.sample(data, 100) train_data = [dt for dt in data if dt not in valid_data] Parallel(n_jobs=20)(delayed(process_ljspeech_one_utterance)(wav_path, text, mode='train', save_root='wavs/LJSpeech') for wav_path,text in tqdm(train_data)) Parallel(20)(delayed(process_ljspeech_one_utterance)(wav_path, text, mode='valid', save_root='wavs/LJSpeech') for wav_path,text in tqdm(valid_data)) # Parallel(n_jobs=20): 指定20个CPU(默认是分配给不同的CPU) all_wavs = glob('wavs/LJSpeech/*/*编程客栈/*.wav') print(f'obtain {len(all_wavs)} wavs...')
到此这篇关于python利用joblib进行并行数据处理的代码示例的文章就介绍到这了,更多相关python joblib并行数据处理内容请搜索编程客栈(www.devze.com)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程javascript客栈(www.devze.com)!
精彩评论