目录
- 创建 NumPy ndarray 对象
- 数组中的维
- 0-D 数组
- 1-D 数组
- 2-D 数组
- 3-D 数组
- 检查维数?
- 更高维的数组
创建 NumPy ndarray 对象
NumPy 用于处理数组,NumPy 中的数组对象称为 ndarray。
我们可以使用 array() 函数创建一个 NumPy ndarray 对象。
实例
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr) pr开发者_JS教程int(type(arr))
运行实例
type(): 这个内置的 python 函数告诉我们传递给它的对象的类型。像上面的代码一样,它表明 arr 是 numpy.ndarray 类型。
要创建 ndarray,我们可以将列表、元组或任何类似数组的对象传递给 array() 方法,然后它将被转换为 ndarray:
实例
使用元组创建 NumPy 数组:
import numpy as np arr = np.array((1, 2, 3, 4, 5)) print(arr)
运行实例
数组中的维
数组中的维是数组深度(嵌套数组)的一个级别
**嵌套数组:**指的是将数组作为元素的数组。
0-D 数组
0-D 数组,或标量(Scalars),是数组中的元素。数组中的每个值都是一个 0-D 数组。
实例
用值 61 创建 0-Dphp 数组:
import numpy as np arr = np.array(61) print(arr)
运行实例
1-D 数组
其元素为 0-D 数组的数组,称为一维或 1-D 数组。
这是最常见和基础的数组
实例
创建包含值 1、2、3、4、5、6 的 1-D 数组:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6]) print(arr)
运行实例
2-D 数组
其元素为 1-D 数组的数组,称为 2-D 数组。
它们通常用于表示矩阵或二阶张量。
NumPy 有一个专门用于矩阵运算的完整子模块 num编程客栈py.mat。
实例
创建包含值 1、2、3 和 4、5、6 两个数组的 2-D 数组:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr)
运行实例
3-D 数组
其元素为 2-D 数组的数组,称为 3-D 数组。
实例
用两个 2-D 数组创建一个 3-D 数组,这两个数组均包含值 1、2、3 和 4、5、6 的两个数组:
import numpy as np arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) print(arr)
运行实例
检查维数?
NumPy 数组提供了 ndim 属性,该属性返回一个整数,该整数会告诉我们数组有多少维。
实例
检查数组有多少维:
import numpy as np a = np.array(42) b = np.array([1, 2, 3, 4, 5]) c javascript= np.array([[1, 2, 3], [4, 5, 6]]) d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) print(a.ndim) print(b.ndim) print(c.ndim) print(d.ndim)
运行实例
更高维的数组
数组可以拥有任意数量的维。
在创建数组时,可以使用 ndmin 参数定义维数。
实例
创建一个有 5 个维度的数组,并验证它拥有 5 个维度:
import numpy as np arr = np.array([1, 2, 3, 4], ndmin=5) prinhttp://www.devze.comt(arr) print('number of dimensions :', arr.ndim)
运行实例
在此数组中,最里面的维度(第 5 个 dim)有 4 个元素,第 4 个 dim 有 1 个元素作为向量,第 3 个 dim 具有 1 个元素是与向量的矩阵,第 2 个 dim 有 1 个元素是 3D 数组,而第 1 个 dim 有 1 个python元素,该元素是 4D 数组。
到此这篇关于Python入门教程(四十)Python的NumPy数组创建的文章就介绍到这了,更多相关Python的NumPy数组创建内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论