开发者

Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

开发者 https://www.devze.com 2023-05-05 09:24 出处:网络 作者: Dust_Evc
目录Unfold()与Fold()的用途nn.Unfold()Unfold()与Fold() 变化模式图解nn.Fold()单通道 滑动窗口无重叠模拟图片数据(b,3,9,9),通道数 C 为3,滑动窗口无重叠。单通道 滑动窗口有重叠。卷积等价于:Unfold + Matri
目录
  • Unfold()与Fold()的用途
  • nn.Unfold()
    • Unfold()与Fold() 变化模式图解
  • nn.Fold()
    • 单通道 滑动窗口无重叠
    • 模拟图片数据(b,3,9,9),通道数 C 为3,滑动窗口无重叠。
    • 单通道 滑动窗口有重叠。
  • 卷积等价于:Unfold + Matrix Multiplication + Fold (或view()到卷积输出形状)

    Unfold()与Fold()的用途

    Unfold()Fold()一般成对出现。常用用途有:

    • 代替卷积计算,Unfold()Fold()不互逆(参数不一样)(卷积本来就不可逆)
    • 图片patch化,Unfold()Fold()互逆(参数一样,且滑动窗不重叠)

    nn.Unfold()

    Extracts sliding local blocks from a BATched input tensor.

    在各滑动窗中按行展开(行向量化),然后转置成列向量, im2col编程客栈 的批量形式

    input : (N, C, ∗)

    output : (N, C × ∏(kernel_size), L)

    # 滑动窗口有重叠
    unfold = nn.Unfold(kernel_size=(2, 3))
    input = torch.randn(2, 5, 3, 4)
    print("input: \n", input)
    output = unfold(input)
    # each patch contains 30 values (2x3=6 vectors, each of 5 channels)
    # 4 blocks (2x3 kernels) in total in the 3x4 input
    # output.size()  # torch.Size([2, 30, 4])
    print("output: \n", output)
    fold = nn.Fold((3,4),(2,3))
    fold_output = fold(output)
    print("fold_output: \n", fold_output)

    输出为:

    input:

    tensor([[[[ 0.4198, 1.0535, 0.1152, 0.3510],

    [ 1.1664, 0.3376, 1.2207, 0.3575],

    [-0.2174, -1.2490, 0.3432, 0.3388]],

    [[-1.4956, 0.9746, -0.5145, 0.1722],

    [ 1.7041, 0.9645, -0.6937, -1.9037],

    [-0.1961, -0.3345, 0.3565, -1.2329]],

    [[-0.9843, -0.8089, 1.8712, -0.2860],

    [ 0.0960, -1.7501, -0.1226, 0.9383],

    [-0.1675, 1.1498, -0.4958, -1.2953]],

    [[-1.2368, 0.5667, 1.4166, -2.2567],

    [ 0.9414, 0.8189, 1.5604, 0.1422],

    [-1.6414, -1.5594, 0.6718, 1.2319]],

    [[-0.4093, 0.6691, 1.4003, 0.7444],

    [-0.2858, -0.4375, -1.1301, 0.7377],

    [-0.0956, -0.1844, 0.7697, -0.3077]]],

    [[[ 0.4264, -0.0700, -1.5600, -0.0491],

    [ 开发者_Js入门1.5027, 3.1625, 0.6080, -1.8794],

    [-0.3148, 0.6377, -0.7242, 0.1692]],

    [[ 0.2757, -0.5403, 0.7748, -1.1795],

    [ 0.1504, -0.4671, 0.9355, 1.3050],

    [-0.4920, -0.8581, 0.0559, -0.0446]],

    [[ 2.1627, 0.6758, -0.0968, 1.3401],

    [-0.1105, 0.8299, -0.3827, -1.0687],

    [-0.2234, -1.0423, 1.2436, -0.6514]],

    [[ 0.8085, -0.4159, 0.2022, 0.5747],

    [-0.1265, 0.2828, -1.3530, 0.2831],

    [-0.1571, 0.9005, 0.4556, -1.4360]],

    [[-1.2417, 0.1829, 0.3825, -0.8555],

    [-2.0170, 0.7537, 2.3406, 0.5866],

    [-1.1704, -1.8986, -0.7958, 0.2652]]]])

    output:

    tensor([[[ 0.4198, 1.0535, 1.1664, 0.3376],

    [ 1.0535, 0.1152, 0.3376, 1.2207],

    [ 0.1152, 0.3510, 1.2207, 0.3575],

    [ 1.1664, 0.3376, -0.2174, -1.2490],

    [ 0.3376, 1.2207, -1.2490, 0.3432],

    [ 1.2207, 0.3575, 0.3432, 0.3388],

    [-1.4956, 0.9746, 1.7041, 0.9645],

    [ 0.9746, -0.5145, 0.9645, -0.6937],

    [-0.5145, 0.1722, -0.6937, -1.9037],

    [ 1.7041, 0.9645, -0.1961, -0.3345],

    [ 0.9645, -0.6937, -0.3345, 0.3565],

    [-0.6937, -1.9037, 0.3565, -1.2329],

    [-0.9843, -0.8089, 0.0960, -1.7501],

    [-0.8089, 1.8712, -1.7501, -0.1226],

    [ 1.8712, -0.2860, -0.1226, 0.9383],

    [ 0.0960, -1.7501, -0.1675, 1.1498],

    [-1.7501, -0.1226, 1.1498, -0.4958],

    [-0.1226, 0.9383, -0.4958, -1.2953],

    [-1.2368, 0.5667, 0.9414, 0.8189],

    [ 0.5667, 1.4166, 0.8189, 1.5604],

    [ 1.4166, -2.2567, 1.5604, 0.1422],

    [ 0.9414, 0.8189, -1.6414, -1.5594],

    [ 0.8189, 1.5604, -1.5594, 0.6718],

    [ 1.5604, 0.1422, 0.6718, 1.2319],

    [-0.4093, 0.6691, -0.2858, -0.4375],

    [ 0.6691, 1.4003, -0.4375, -1.1301],

    [ 1.4003, 0.7444, -1.1301, 0.7377],

    [-0.2858, -0.4375, -0.0956, -0.1844],

    [-0.4375, -1.1301, -0.1844, 0.7697],

    [-1.1301, 0.7377, 0.7697, -0.3077]],

    [[ 0.4264, -0.0700, 1.5027, 3.1625],

    [-0.0700, -1.5600, 3.1625, 0.6080],

    [-1.5600, -0.0491, 0.6080, -1.8794],

    [ 1.5027, 3.1625, -0.3148, 0.6377],

    [ 3.1625, 0.6080, 0.6377, -0.7242],

    [ 0.6080, -1.8794, -0.7242, 0.1692],

    [ 0.2757, -0.5403, 0.1504, -0.4671],

    [-0.5403, 0.7748, -0.4671, 0.9355],

    [ 0.7748, -1.1795, 0.9355, 1.3050],

    [ 0.1504, -0.4671, -0.4920, -0.8581],

    [-0.4671, 0.9355, -0.8581, 0.0559],

    [ 0.9355, 1.3050, 0.0559, -0.0446],

    [ 2.1627, 0.6758, -0.1105, 0.8299],

    [ 0.6758, -0.0968, 0.8299, -0.3827],

    [-0.0968, 1.3401, -0.3827, -1.0687],

    [-0.1105, 0.8299, -0.2234, -1.0423],

    [ 0.8299, -0.3827, -1.0423, 1.2436],

    [-0.3827, -1.0687, 1.2436, -0.6514],

    [ 0.8085, -0.4159, -0.1265, 0.2828],

    [-0.4159, 0.2022, 0.2828, -1.3530],

    [ 0.2022, 0.5747, -1.3530, 0.2831],

    [-0.1265, 0.2828, -0.1571, 0.9005],

    [ 0.2828, -1.3530, 0.9005, 0.4556],

    [-1.3530, 0.2831, 0.4556, -1.4360],

    [-1.2417, 0.1829, -2.0170, 0.7537],

    [ 0.1829, 0.3825, 0.7537, 2.3406],

    [ 0.3825, -0.8555, 2.3406, 0.5866],

    [-2.0170, 0.7537, -1.1704, -1.8986],

    [ 0.7537, 2.3406, -1.8986, -0.7958],

    [ 2.3406, 0.5866, -0.7958, 0.2652]]])

    fold_output:

    tensor([[[[ 0.4198, 2.1070, 0.2304, 0.3510],

    [ 2.3328, 1.3502, 4.8828, 0.7150],

    [-0.2174, -2.4979, 0.6865, 0.3388]],

    [[-1.4956, 1.9493, -1.0290, 0.1722],

    [ 3.4083, 3.8582, -2.7747, -3.8074],

    [-0.1961, -0.6690, 0.7129, -1.2329]],

    [[-0.9843, -1.6178, 3.7424, -0.2860],

    [ 0.1920, -7.0003, -0.4904, 1.8766],

    [-0.1675, 2.2995, -0.9917, -1.2953]],

    [[-1.2368, 1.1334, 2.8331, -2.2567],

    [ 1.8829, 3.2758, 6.2418, 0.2843],

    [-1.6414, -3.1189, 1.3435, 1.2319]],

    [[-0.4093, 1.3382, 2.8006, 0.7444],

    [-0.5717, -1.7500, -4.5204, 1.4754],

    [-0.0956, -0.3688, 1.5395, -0.3077]]],

    [[[ 0.4264, -0.1399, -3.1201, -0.0491],

    [ 3.0053, 12.6500, 2.4319, -3.7589],

    [-0.3148, 1.2753, -1.4484, 0.1692]],

    [[ 0.2757, -1.0806, 1.5497, -1.1795],

    [ 0.3007, -1.8684, 3.7421, 2.6100],

    [-0.4920, -1.7162, 0.1119, -0.0446]],

    [[ 2.1627, 1.3515, -0.1936, 1.3401],

    [-0.2210, 3.3198, -1.5307, -2.1373],

    [-0.2234, -2.0846, 2.4872, -0.6514]],

    [[ 0.8085, -0.8318, 0.4044, 0.5747],

    [-0.2529, 1.1310, -5.4121, 0.5662],

    [-0.1571, 1.8010, 0.9112, -1.4360]],

    [[-1.2417, 0.3659, 0.7650, -0.8555],

    [-4.0339, 3.0146, 9.3626, 1.1733],

    [-1.1704, -3.7972, -1.5917, 0.2652]]]])

    Unfold()与Fold() 变化模式图解

    以上面代码输出为例,其实是以如下的格式对原数据进行组织排列的:

    在各滑动窗中按行展开(行向量化),然后转置成列向量, 是im2col的批量形式。

    Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

    Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

    然后,对Unfold()的结果以相同参数运用Fold()后(Fold()的讲解在下面,这里先给出结果),结果如下:

    Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

    nn.Fold()

    nn.Fold() 是 nn.Unfold() 函数的逆操作。 (参数相同、滑动窗口没有重叠的情况下,可以完全恢复【真互逆】。滑动窗口有重叠情况下不能恢复到Unfold的输入)

    需要注意的是,如果滑动窗口有重叠,那么重叠部分相加【倍数关系】。同时,如果原来的图像不够划分的话就会舍去。在恢复时就会以 0 填充。

    单通道 滑动窗口无重叠

    # 单通道  滑动窗口无重叠
    import torch.nn as nn
    import torch
    batches_img = torch.rand(1,1,6,6)
    print("batches_img: ",batches_img)
    unandroidfold = nn.Unfold(kernel_size=(3,3),stride=3)
    patche_img = unfold(batches_img)
    print("patche_img.shape: ",patche_img.shape)
    print(patche_img)
    fold = torch.nn.Fold(output_size=(6, 6), kernel_size=(3, 3), stride=3)
    inputs_restore = fold(patche_img)
    print("inputs_restore:", inputs_restore)

    输出:

    batches_img: tensor([[[[0.0174, 0.3919, 0.0073, 0.4660, 0.6537, 0.0584],

    [0.9763, 0.9982, 0.6250, 0.1332, 0.2123, 0.9500],

    [0.5482, 0.4291, 0.9430, 0.6837, 0.6975, 0.1992],

    [0.5275, 0.6800, 0.0490, 0.0350, 0.8571, 0.2449],

    [0.3719, 0.7484, 0.7677, 0.4164, 0.2151, 0.8875],

    [0.0784, 0.3839, 0.7567, 0.4217, 0.3208, 0.3025]]]])

    patche_img.shape: torch.Size([1, 9, 4])

    tensor([[[0.0174, 0.4660, 0.5275, 0.0350],

    [0.3919, 0.6537, 0.6800, 0.8571],

    [0.0073, 0.0584, 0.0490, 0.2449],

    [0.9763, 0.1332, 0.3719, 0.4164],

    [0.9982, 0.2123, 0.7484, 0.2151],

    [0.6250, 0.9500, 0.7677, 0.8875],

    [0.5482, 0.6837, 0.0784, 0.4217],

    [0.4291, 0.6975, 0.3839, 0.3208],

    [0.9430, 0.1992, 0.7567, 0.3025]]])

    inputs_restore: tensor([[[[0.0174, 0.3919, 0.0073, 0.4660, 0.6537, 0.0584],

    [0.9763, 0.9982, 0.6250, 0.1332, 0.2123, 0.9500],

    [0.5482, 0.4291, 0.9430, 0.6837, 0.6975, 0.1992],

    [0.5275, 0.6800, 0.0490, 0.0350, 0.8571, 0.2449],

    [0.3719, 0.7484, 0.7677, 0.4164, 0.2151, 0.8875],

    [0.0784, 0.3839, 0.7567, 0.4217, 0.3208, 0.3025]]]])

    模拟图片数据(b,3,9,9),通道数 C 为3,滑动窗口无重叠。

    相较于上面的代码,变化仅此

    # 模拟图片数据(b,3,9,9),通道数 C 为3,滑动窗口无重叠。 相较于上面的代码,变化仅此
    import torch.nn as nn
    import torch
    batches_img = torch.rand(1,3,6,6)
    print("batches_img: ",batches_img)
    unfold = nn.Unfold(kernel_size=(3,3),stride=3)
    patche_img = unfold(batches_img)
    print("patche_img.shape: ",patche_img.shape)
    print(patche_img)
    fold = torch.nn.Fold(output_size=(6, 6), kernel_size=(3, 3), stride=3)
    inputs_restore = fold(patche_img)
    print("inputs_restore:", inputs_restore)

    输出为:

    batches_img: tensor([[[[0.6072, 0.9496, 0.4149, 0.1085, 0.6808, 0.3949],

    [0.9770, 0.4831, 0.3964, 0.6597, 0.1749, 0.7326],

    [0.4379, 0.0159, 0.2946, 0.4129, 0.1445, 0.5479],

    [0.1664, 0.6725, 0.5104, 0.4171, 0.6656, 0.3146],

    [0.5126, 0.2331, 0.8167, 0.2695, 0.6420, 0.8591],

    [0.2282, 0.6300, 0.9205, 0.6741, 0.6085, 0.7866]],

    [[0.7943, 0.8348, 0.5379, 0.1951, 0.2629, 0.7281],

    [0.5726, 0.4912, 0.5636, 0.7816, 0.9746, 0.3764],

    [0.5440, 0.3434, 0.5914, 0.5925, 0.9556, 0.0455],

    [0.0810, 0.0730, 0.2580, 0.0785, 0.2483, 0.3810],

    [0.4182, 0.7024, 0.4904, 0.6935, 0.1789, 0.1015],

    [0.2571, 0.9138, 0.1987, 0.6266, 0.0760, 0.4618]],

    [[0.3554, 0.2476, 0.3415, 0.5014, 0.1018, 0.3563],

    [0.2180, 0.5690, 0.9975, 0.8152, 0.5812, 0.2704],

    [0.5717, 0.9419, 0.4398, 0.5708, 0.2666, 0.3507],

    [0.3868, 0.6889, 0.0326, 0.7873, 0.7444, 0.8057],

    [0.1440, 0.9667, 0.2522, 0.9718, 0.6078, 0.2911],

    [0.1442, 0.3061, 0.4116, 0.4190, 0.2343, 0.2608]]]])

    patche_img.shape: torch.Size([1, 27, 4])

    tensor([[[0.6072, 0.1085, 0.1664, 0.4171],

    [0.9496, 0.6808, 0.6725, 0.6656],

    [0.4149, 0.3949, 0.5104, 0.3146],

    [0.9770, 0.6597, 0.5126, 0.2695],

    [0.android4831, 0.1749, 0.2331, 0.6420],

    [0.3964, 0.7326, 0.8167, 0.8591],

    [0.4379, 0.4129, 0.2282, 0.6741],

    [0.0159, 0.1445, 0.6300, 0.6085],

    [0.2946, 0.5479, 0.9205, 0.7866],

    [0.7943, 0.1951, 0.0810, 0.0785],

    [0.8348, 0.2629, 0.0730, 0.2483],

    [0.5379, 0.7281, 0.2580, 0.3810],

    [0.5726, 0.7816, 0.4182, 0.6935],

    [0.4912, 0.9746, 0.7024, 0.1789],

    [0.5636, 0.3764, 0.4904, 0.1015],

    [0.5440, 0.5925, 0.2571, 0.6266],

    [0.3434, 0.9556, 0.9138, 0.0760],

    [0.5914, 0.0455, 0.1987, 0.4618],

    [0.3554, 0.5014, 0.3868, 0.7873],

    [0.2476, 0.1018, 0.6889, 0.7444],

    [0.3415, 0.3563, 0.0326, 0.8057],

    [0.2180, 0.8152, 0.1440, 0.9718],

    [0.5690, 0.5812, 0.9667, 0.6078],

    [0.9975, 0.2704, 0.2522, 0.2911],

    [0.5717, 0.5708, 0.1442, 0.4190],

    [0.9419, 0.2666, 0.3061, 0.2343],

    [0.4398, 0.3507, 0.4116, 0.2608]]])

    inputs_restore: tensor([[[[0.6072, 0.9496, 0.4149, 0.1085, 0.6808, 0.3949],

    [0.9770, 0.4831, 0.3964, 0.6597, 0.1749, 0.7326],

    [0.4379, 0.0159, 0.2946, 0.4129, 0.1445, 0.5479],

    [0.1664, 0.6725, 0.5104, 0.4171, 0.6656, 0.3146],

    [0.5126, 0.2331, 0.8167, 0.2695, 0.6420, 0.8591],

    [0.2282, 0.6300, 0.9205, 0.6741, 0.6085, 0.7866]],

    [[0.7943, 0.8348, 0.5379, 0.1951, 0.2629, 0.7281],

    [0.5726, 0.4912, 0.5636, 0.7816, 0.9746, 0.3764],

    [0.5440, 0.3434, 0.5914, 0.5925, 0.9556, 0.0455],

    [0.0810, 0.0730, 0.2580, 0.0785, 0.2483, 0.3810],

    [0.4182, 0.7024, 0.4904, 0.6935, 0.1789, 0.1015],

    [0.2571, 0.9138, 0.1987, 0.6266, 0.0760, 0.4618]],

    [[0.3554, 0.2476, 0.3415, 0.5014, 0.1018, 0.3563],

    [0.2180, 0.5690, 0.9975, 0.8152, 0.5812, 0.2704],

    [0.5717, 0.9419, 0.4398, 0.5708, 0.2666, 0.3507],

    [0.3868, 0.6889www.devze.com, 0.0326, 0.7873, 0.7444, 0.8057],

    [0.1440, 0.9667, 0.2522, 0.9718, 0.6078, 0.2911],

    [0.1442, 0.3061, 0.4116, 0.4190, 0.2343, 0.2608]]]])

    单通道 滑动窗口有重叠。

    kernel_size=(3,3),stride=2

    # 单通道 滑动窗口有重叠。  kernel_size=(3,3),stride=2
    import torch.nn as nn
    import torch
    batches_img = torch.rand(1,1,6,6)
    print("batches_img: \n",batches_img)
    unfold = nn.Unfold(kernel_size=(3,3),stride=2)
    patche_img = unfold(batches_img)
    print("patche_img.shape: ",patche_img.shape)
    print(patche_img)
    fold = torch.nn.Fold(output_size=(6, 6), kernel_size=(3, 3), stride=2)
    inputs_restore = fold(patche_img)
    print("inputs_restore: \n", inputs_restore)

    输出为:

    batches_img:

    tensor([[[[0.4171, 0.0129, 0.2183, 0.0610, 0.5242, 0.9530],

    [0.7112, 0.7892, 0.2548, 0.4604, 0.7200, 0.0294],

    [0.0754, 0.0451, 0.2892, 0.6765, 0.8671, 0.5574],

    [0.4220, 0.4499, 0.8946, 0.0149, 0.6790, 0.0719],

    [0.1529, 0.2815, 0.8502, 0.5781, 0.0339, 0.9916],

    [0.6900, 0.4843, 0.3190, 0.0676, 0.8558, 0.0060]]]])

    patche_img.shape: torch.Size([1, 9, 4])

    tensor([[[0.4171, 0.2183, 0.0754, 0.2892],

    [0.0129, 0.0610, 0.0451, 0.6765],

    [0.2183, 0.5242, 0.2892, 0.8671],

    [0.7112, 0.2548, 0.4220, 0.8946],

    [0.7892, 0.4604, 0.4499, 0.0149],

    [0.2548, 0.7200, 0.8946, 0.6790],

    [0.0754, 0.2892, 0.1529, 0.8502],

    [0.0451, 0.6765, 0.2815, 0.5781],

    [0.2892, 0.8671, 0.8502, 0.0339]]])

    inputs_restore:

    tensor([[[[0.4171, 0.0129, 0.4365, 0.0610, 0.5242, 0.0000],

    [0.7112, 0.7892, 0.5095, 0.4604, 0.7200, 0.0000],

    [0.1507, 0.0902, 1.1567, 1.3530, 1.7342, 0.0000],

    [0.4220, 0.4499, 1.7892, 0.0149, 0.6790, 0.0000],

    [0.1529, 0.2815, 1.7005, 0.5781, 0.0339, 0.0000],

    [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])

    # 重复累加次数最多的元素:

    batches_img[0,0,2,2]*4

    # 输出:tensor(1.1567)

    卷积等价于:Unfold + Matrix Multiplication + Fold (或view()到卷积输出形状)

    注: 使用 Unfold + Matrix Multiplication + Fold 来代替卷积时,Fold 中的 kernel size 需要为 (1,1)

    inp =javascript torch.randn(1, 3, 10, 12)
    w = torch.randn(2, 3, 4, 5)
    inp_unf = torch.nn.functional.unfold(inp, (4, 5))
    out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2)
    out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1))
    # or equivalently (and avoiding a copy),
    # out = out_unf.view(1, 2, 7, 8)
    (torch.nn.functional.conv2d(inp, w) - out).abs().max()  # tensor(1.9073e-06)

    到此这篇关于Pytorch nn.Unfold()与nn.Fold()图码详解的文章就介绍到这了,更多相关Pytorchnn.Unfold()与nn.Fold()图码内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消