开发者

NumPy之矩阵向量线性代数等操作示例

开发者 https://www.devze.com 2023-04-29 09:31 出处:网络 作者: CodeDevMaster
目录NumPy矩阵和向量矩阵向量创建向量创建矩阵访问元素转置矩阵矩阵加减乘除矩阵向量乘法矩阵求逆矩阵的迹向量点积向量范数NumPy线性代数计算矩阵乘积计算矩阵的逆解线性方程组NumPy矩阵和向量编程客栈
目录
  • NumPy矩阵和向量
    • 矩阵
    • 向量
    • 创建向量
    • 创建矩阵
    • 访问元素
    • 转置矩阵
    • 矩阵加减乘除
    • 矩阵向量乘法
    • 矩阵求逆
    • 矩阵的迹
    • 向量点积
    • 向量范数
  • NumPy线性代数
    • 计算矩阵乘积
    • 计算矩阵的逆
    • 解线性方程组

NumPy矩阵和向量编程客栈

矩阵

在NumPy中,矩阵可以python看作是一个二维数组,其中每个元素都可以通过行列坐标来定位。它表示为一个m×n的矩形网格,其中m表示矩阵的行数,n表示矩阵的列数。在计算机科学中,矩阵通常用数字或符号表示,并且可以进行加、减、乘等运算。

一个M X N的矩阵python是一个由M行(row)N列(column)元素排列成的矩形阵列。矩阵里的元素可以是数字、符号或数学式。

以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:

[1 2 3]
[4 5 6]

注意:2×3矩阵即2行3列,请把左、右两边的多个[与多个]看成一个整体[]

向量

在 NumPy 中,向量是一维数组对象,其所有元素都必须具有相同的数据类型。向量可以通过创建一个一维数组来实现。

向量是一种特殊的矩阵,其中只包含一行或一列元素。向量通常用数字或符号表示,其大小表示向量包含的元素数量。

创建一个包含五个元素的向量:

import numpy as np
v = np.array([1, 2, 3, 4, 5])

创建向量

import numpy as np
# 创建一维数组
v = np.array([1, 2, 3])
print(v)  # 输出:[1 2 3]

创建矩阵

import numpy as np
# 创建二维数组
m = np.array([[1, 2, 3], [4, 5, 6]])
print(m)  # 输出:[[1 2 3]
          #      [4 5 6]]

访问元素

import numpy as np
# 创建一维数组
v = np.array([1, 2, 3])
# 访问元素
print(v[0])  # 输出:1
print(v[1])  # 输出:2
print(v[2])  # 输出:3

转置矩阵

NumPy中除了可以使用numpy.transpose 函数来对换数组的维度,还可以使用 T 属性。

例如有个 m 行 n 列的矩阵,使用 t() 函数就能转换为 n 行 m 列的矩阵。

import numpy as np
# 创建矩阵
A = np.array([[1, 2], [3, 4]])
# 转置矩阵
AT = np.transpose(A)
print(AT)  # 输出:[[1 3]
           #      [2 4]]
print (A.T)    

矩阵加减乘除

# 矩阵加法
np.add(A, B)
# 矩阵减法
np.subtract(A, B)
# 矩阵乘法
# 在进行矩阵乘法时,前一个矩阵的列数必须等于后一个矩阵的行数,才能进行乘法运算
# (M行, N列)*(N行, L列) = (M行, L列)
p.dot(A, B)
# 矩阵除法
np.divide(A, B)
import numpy as np
# 创建矩阵A和B
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print("A + B:")
print(np.add(A, B))
[1, 2]  	[5, 6]		[6, 8]
		+  			=  
[3, 4]		[7, 8]		[10, 12]
print("A - B:")
print(np.subtract(A, B))
[1, 2]  	[5, 6]		[-4, -4]
		-  			=  
[3, 4]		[7, 8]		[-4, -4]
print("A * B:")
print(np.dot(A, B))
[1, 2]  	[5, 6]		[19, 22]
		*  			=  
[3, 4]		[7, 8]		 [43, 50]
print("A / B:")
print(np.divide(A, B))
[1, 2]  	[5, 6]		[0.2,  0.33333333]
		/  			=  
[3, 4]		[7, 8]		[0.42857143, 0.5]

矩阵和矩阵(向量)相乘: (M行, N列)*(N行, L列) = (M行, L列)

NumPy之矩阵向量线性代数等操作示例

矩阵向量乘法

m×n 的矩阵乘以 n×1 的向量,得到的是 m×1 的向量

[1, 2]  	[1]			[19]
		*  			=  
[3, 4]		[1]			 [43]

矩阵求逆

使用numpy.linalg.inv()函数进行矩阵求逆操作

import numpy as np
# 创建矩阵
matrix = np.array([[1, 2], [3, 4]])
# 求逆矩阵
result = np.linal编程客栈g.inv(matrix)
print(result)

矩阵的迹

使用numpy.trace()函数可以计算矩阵的迹

import numpy as np
# 创建矩阵
matrix = np.array([[1,编程客栈 2], [3, 4]])
# 计算矩阵的迹
result = np.trace(matrix)
print(result)

向量点积

使用numpy.dot()函数进行向量点积操作

import numpy as np
# 创建两个向量
vector1 = np.array([1, 2])
vector2 = np.array([3, 4])
# 向量点积
result = np.dot(vector1, vector2)
print(result)

向量范数

使用numpy.linalg.norm()函数可以计算向量的范数

import numpy as np
# 创建向量
vector = np.array([1, 2, 3])
# 计算向量的L2范数
result = np.linalg.norm(vector)
print(result)

NumPy线性代数

NumPy的线性代数模块(numpy.linalg)提供了许多矩阵运算函数,如矩阵乘法、求逆、行列式、特征值等,该库包含了线性代数所需的所有功能。

常用的 NumPy 线性代数函数:

函数说明
np.dot(a, b):两个数组的点积,即元素对应相乘
np.matmul(a, b)两个数组的矩阵积
np.linalg.inv(a)计算矩阵的逆
np.linalg.det(a)计算矩阵的行列式
np.linalg.eig(a)计算矩阵的特征值和特征向量
np.linalg.solve(a, b)解线性方程组 ax=b

计算矩阵乘积

开发者_Python教程
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
print(np.dot(a, b))
# [[19 22]
#  [43 50]]

计算矩阵的逆

import numpy as np
a = np.array([[1, 2], [3, 4]])
print(np.linalg.inv(a))
# [[-2.   1. ]
#  [ 1.5 -0.5]]

解线性方程组

import numpy as np
a = np.array([[2, 3], [4, 5]])
b = np.array([5, 6])
x = np.linalg.solve(a, b)
print(x) # [-4.  5.]

解得的线性方程组如下,其解为x1=−4,x2=5

NumPy之矩阵向量线性代数等操作示例

以上就是NumPy之矩阵向量线性代数等操作示例的详细内容,更多关于NumPy 矩阵向量线性代数的资料请关注我们其它相关文章!

0

精彩评论

暂无评论...
验证码 换一张
取 消