目录
- 引言
- 基本示例
- Numpy 风格的算子重载
- 通用调度和融合操作
- 融合卷积
- 总结
引言
本篇文章译自英文文档 Introduction to TOPI。
作者是 Ehsan M. Kermani。
更多 TVM 中文文档可访问 →TVM 中文站
这是 TVM 算子清单(TOPI)的入门教程。 TOPI 提供了 numpy 风格的通用操作和 schedule,其抽象程度高于 TVM。本教程将介绍 TOPI 是如何使得 TVM 中的代码不那么样板化的。
import tvm import tvm.testing from tvm import te from tvm import topi import numpy as np
基本示例
让我们回顾一下行求和操作(例如 B = numpy.sum(A, axis=1))。要计算二维 TVM 张量 A 的行之和,应指定符号运算以及 schedule,如下所示:
n = te.var("n") m = te.var("m") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), "k") B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B") s = te.create_schedule(B.op)
输入以下命令查看可读的 IR 代码:
print(tvm.lower(s, [A], simple_mode=True))
输出结果:
@main = primfn(A_1: handle) -> () attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True} buffers = {A: Buffer(A_2: Pointer(float32), float32, [(stride: int32*n: int32)], [], type="auto")} buffer_map = {A_1: A} preflattened_buffer_map = {A_1: A_3: Buffer(A_2, float32, [n, m: int32], [stride, stride_1: int32], type="auto")} { allocate(B: Pointer(global float32), float32, [n]), storage_scope = global; for (i: int32, 0, n) { B_1: Buffer(B, float32, [n], [])[i] = 0f32 for (k: int32, 0, m) { B_1[i] = (B_1[i] + A[((i*stride) + (k*stride_1))]) } } }
然而,必须为这样一个常用的操作定义 reduce 轴,并用te.compute定义显式计算。幸运的是,可以用topi.sum(类似numpy.sum)来替换这两行:
C = topi.sum(A, axis=1) ts = te.create_schedule(C.op) print(tvm.lower(ts, [A], simple_mode=True))
输出结果:
@main = primfn(A_1: handle) -> () attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True} buffers = {A: Buffer(A_2: Pointer(float32), float32, [(stride: int32*n: int32)], [], type="auto")} buffer_map = {A_1: A} preflattened_buffer_map = {A_1: A_3: Buffer(A_2, float32, [n, m: int32], [stride, stride_1: int32], type="auto")} { allocate(A_red: Pointer(global float32), float32, [n]), storage_scope = global; for (ax0: int32, 0, n) { A_red_1: Buffer(A_red, float32, [n], [])[ax0] = 0f32 for (k1: int32, 0, m) { A_red_1[ax0] = (A_red_1[ax0] + A[((ax0*stride) + (k1*stride_1))]) } } }
Numpy 风格的算子重载
可用 topi.broadcast_add 添加两个张量(其 shape 可广播,且是特定的)。TOPI 为此类常见操作提供了算子重载使其更简短。例如:
x, y = 100, 10 a = te.placeholder((x, y, y), name="a") b = te.placeholder((y, y), name="b") c = a + b # 等价于 topi.broadcast_add d = a * b # 等价于 topi.broadcast_mul
TOPI 使用相同的语法重载,将原语 (int, float) 广播到张量 d - 3.14。
通用调度和融合操作
前面已经展示了 TOPI 如何使我们免于用低级 API 编写显式的计算过程,但调度过程还是和以前一样。TOPI 还基于给定的上下文提供了更高级的调度方案。可以仅用 topi.generic.schedule_reduce 调度下面以 topi.sum 结尾的一系列操作,以 CUDA 为例:
e = topi.elemwise_sum([c, d]) f = e / 2.0 g = topi.sum(f) with tvm.target.cuda(): sg = topi.cuda.schedule_reduce(g) print(tvm.lower(sg, [a, b], simple_mode=True))
输出结果:
/workspace/python/tvm/target/target.py:377: UserWarning: Try specifying cuda arch by adding 'arch=sm_xx' to your target. warnings.warn("Try specifying cuda arch by adding 'arch=sm_xx' to your target.") @main = primfn(a_1: handle, b_1: handle) -> () attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True} buffers = {a: Buffer(a_2: Pointer(float32), float32, [10000], []), b: Buffer(b_2: Pointer(float32), float32, [100], [])} buffer_map = {a_1: a, b_1: b} preflattened_buffer_map = {a_1: a_3: Buffer(a_2, float32, [100, 10, 10], []), b_1: b_3: Buffer(b_2, float32, [10, 10], [])} { allocate(T_divide_red: Pointer(global float32), float32, [1]), storage_scope = global; attr [IterVar(threadIdx.x: int32, [0:1024], "ThreadIndex", "threadIdx.x")] "thread_extent" = 1024; allocate(T_divide_red.rf: Pointer(local float32), float32, [1]), storage_scope = local; allocate(reduce_temp0: Pointer(local float32), float32, [1]), storage_scope = local { T_divide_red.rf_1: Buffer(T_divide_red.rf, float32, [1], [], scope="local", align=4)[0] = 0f32 for (k0.k1.fused.k2.fused.outer: int32, 0, 10) { if @tir.likely((((((k0.k1.fused.k2.fused.outer*64) + floordiv(threadIdx.x, 16)) < 625) && (((k0.k1.fused.k2.fused.outer*64) + floordiv(threadIdx.x, 16)) < 625)) && (((k0.k1.fused.k2.fused.outer*64) + floordiv(threadIdx.x, 16)) < 625)), dtype=bool) { T_divide_red.rf_1[0] = (T_divide_red.rf_1[0] + (((a[((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x)] + b[((floordiv(floormod(((k0.k1.fused.k2.fused.outer*12) + floordiv(threadIdx.x, 2)), 50), 5)*10) + floormod(((k0.k1.fused.k2.fused.outer*4) + threadIdx.x), 10))]) + (a[((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x)]*b[((floordiv(floormod(((k0.k1.fused.k2.fused.outer*12) + floordiv(threadIdx.x, 2)), 50), 5)*10) + floormod(((k0.k1.fused.k2.fused.outer*4) + threadIdx.x), 10))]))*0.5f32)) } } attr [meta[tir.CommReducer][0]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle); @tir.tvm_thread_allreduce(1u32, T_divide_red.rf_1[0], True, reduce_temp0_1: Buffer(reduce_temp0, float32, [1], [], scope="local")[0], threadIdx.x, dtype=handle) if (threadIdx.x == 0) { T_divide_red_1: Buffer(T_divide_red, float32, [1], [], align=4)[0] = reduce_temp0_1[0] } } }
如上所示,计算的调度阶段是累积的,可以输入以下命令来查看:
print(sg.stages)
输出结果:
[stage(a, placeholder(a, 0x228afb00)), stage(b, placeholder(b, 0x22097c90)), stage(T_add, compute(T_add, body=[(a[ax0, ax1, ax2] + b[ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=broadcast, attrs={})), stage(T_multiply, compute(T_multiply, body=[(a[ax0, ax1, ax2]*b[ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=broadcast, attrs={})), stage(T_elemwise_sum, compute(T_elemwise_sum, body=[(T_add[ax0, ax1, ax2] + T_multiply[ax0, ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=elemwise, attrs={})), stage(T_divide, compute(T_divide, body=[(T_elemwise_sum[ax0, ax1, ax2]/2f)], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=elemwise, attrs={})), stage(T_divide_red.rf, compute(T_divide_red.rf, body=[reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[T_divide[floordiv(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10), floormod(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10), floormod((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10)]], init=[], axis=[iter_var(k0.k1.fused.k2.fused.outer, range(min=0, ext=10))], where=tir.likely((((floordiv(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10) < 100) && (floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10) < 1000)) && ((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)) < 10000))), value_index=0)], axis=[iter_var(k0.k1.fused.k2.fused.inner, range(min=0, ext=1024))], reduce_axis=[iter_var(k0.k1.fused.k2.fused.outer, range(min=0, ext=10))], tag=, attrs={})), stage(T_divide_red, compute(T_divide_red.repl, body=[reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[T_divide_red.rf[k0.k1.fused.k2.fused.inner.v]], init=[], axis=[iter_var(k0.k1.fused.k2.fused.inner.v, range(min=0, ext=1024))], where=(bool)1, value_index=0)], axis=[], reduce_axis=[iter_var(k0.k1.fused.k2.fused.inner.v, range(min=0, ext=1024))], tag=, attrs={}))]
可通过与 numpy 结果对比来验证其正确性,如下所示:
func = tvm.build(sg, [a, b, g], "cuda") dev = tvm.cuda(0) a_np = np.random.uniform(size=(x, y, y)).astype(a.dtype) b_np = np.random.uniform(size=(y, y)).astype(b.dtype) g_np = np.sum(np.add(a_np + b_np, a_np * b_np) / 2.0) a_nd = tvm.nd.array(a_np, dev) b_nd = tvm.nd.array(b_np, dev) g_nd = tvm.nd.array(np.zeros(g_np.shape, dtype=g_np.dtype), dev) func(a_nd, b_nd, g_nd) tvm.testing.assert_allclose(g_nd.numpy(), g_np, rtol=1e-5)
TOPI 还提供了常见神经网络操作,例如对优化的 schedule 进行 softmax:
tarray = te.placeholder((512, 512), name="tarray") softmax_topi = topi.nn.softmax(tarray) with tvm.target.Target("cuda"): sst = topi.cuda.schedule_softmax(softmax_topi) print(tvm.lower(sst, [tarray], simple_mode=True))
输出结果:
@main = primfn(tarray_1: handle) -> () attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True} buffers = {tarray: Buffer(tarray_2: Pointer(float32), float32, [262144], [])} buffer_map = {tarray_1: tarray} preflattened_buffer_map = {tarray_1: tarray_3: Buffer(tarray_2, float32, [512, 512], [])} { allocate(T_softmax_norm: Pointer(global float32x4), float32x4, [65536]), storage_scope = global; attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 512; allocate(normal_reduce_temp0: Pointer(local float32), float32, [1]), storage_scope = local; allocate(reduce_temp0: Pointer(local float32), float32, [1]), storage_scope = local; allocate(T_softmax_exp: Pointer(warp float32), float32, [512]), storage_scope = warp; allocate(normal_reduce_temp0_1: Pointer(local float32), float32, [1]), storage_scope = local; allocate(reduce_temp0_1: Pointer(local float32), float32, [1]), storage_scope = local { attr [IterVar(threadIdx.x: int32, [0:32], "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 { normal_reduce_temp0_2: Buffer(normal_reduce_temp0, float32, [1], [], scope="local")[0] = -3.40282e+38f32 for (k.inner: int32, 0, 16) { normal_reduce_temp0_2[0] = max(normal_reduce_temp0_2[0], tarray[(((blockIdx.x*512) + (threadIdx.x*16)) + k.inner)]) } attr [meta[tir.CommReducer][0]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle); @tir.tvm_thread_allreduce(1u32, normal_reduce_temp0_2[0], True, reduce_temp0_2: Buffer(reduce_temp0, float32, [1], [], scope="local")[0], threadIdx.x, dtype=handle) for (i1.inner.outer: int32, 0, 4) { let cse_var_1: int32 = (i1.inner.outer*4) T_softmax_exp_1: Buffer(T_softmax_exp, float32, [512], [], scope="warp")[ramp(((threadIdx.x*16) + cse_var_1), 1, 4)] = @tir.exp((tarray[ramp((((blockIdx.x*512) + (threadIdx.x*16)) + cse_var_1), 1, 4)] - broadcast(reduce_temp0_3: Buffer(reduce_temp0, float32, [1], [], scope="local", align=4)[0], 4)), dtype=float32x4) } } attr [IterVar(threadIdx.x, [0:32], "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 { normal_reduce_temp0_3: Buffer(normal_reduce_temp0_1, float32, [1], [], scope="local")[0] = 0f32 for (k.inner_1: int32, 0, 16) { normal_reduce_temp0_3[0] = (normal_reduce_temp0_3[0] + T_softmax_exp_1[((threadIdx.x*16) + k.inner_1)]) } attr [meta[tir.CommReducer][1]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle); @tir.tvm_thread_allreduce(1u32, normal_reduce_temp0_3[0], True, reduce_temp0_4: Buffer(reduce_temp0_1, float32, [1], [], scope="local")[0], threadIdx.x, dtype=handle) for (i1.inner.outer_1: int32, 0, 4) { T_softmax_norm_1: Buffer(T_softmax_norm, float32x4, [65536], [])[(((blockIdx.x*128) + (threadIdx.x*4)) + i1.inner.outer_1)] = (T_softmax_exp_1[ramp(((threadIdx.x*16) + (i1.inner.outer_1*4)), 1, 4)] / broadcast(reduce_temp0_5: Buffer(reduce_temp0_1, float32, [1], [], scope="local", align=4)[0], 4)) } } } }
融合卷积
可将 topi.nn.conv2d 和 topi.nn.relu 融合在一起。
备注
TOPI 函数都是通用函数,不同的后端实现性能优化的方式不同。所有的后端都必须在 compute 声明和 schedule 范围内调用它们。 TVM 会选择调用目标信息的正确函数。
data = te.placeholder((1, 3, 224, 224)) kernel = te.placeholder((10, 3, 5, 5)) with tvm.target.Target("cuda"): conv = topi.cuda.conv2d_nchw(data, kernel, 1, 2, 1) out = topi.nn.relu(conv) sconv = topi.cuda.schedule_conv2d_nchw([out]) print(tvm.lower(sconv, [data, kernel], simple_mode=True))
输出结果:
@main = primfn(placeholder_2: handle, placeholder_3: handle) -> () attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True} buffers = {placeholder: Buffer(placeholder_4: Pointer(float32), float32, [150528], []), placeholder_1: Buffer(placeholder_5: Pointer(float32), float32, [750], [])} buffer_map = {placeholder_2: placeholder, placeholder_3: placeholder_1} preflattened_buffer_map = {placeholder_2: placeholder_6: Buffer(placeholder_4, float32, [1, 3, 224, 224], []), placeholder_3: pla开发者_C入门ceholder_7: Buffer(placeholder_5, float32, [10, 3, 5, 5], [])} { allocate(compute: Pointer(global float32), float32, [501760]), storage_scope = global; attr [IterVar(blockIdx.z: int32, (nullptr), "ThreadIndex", "blockIdx.z")] "thread_extent" = 5; allocate(conv2d_nchw: Pointer(local float32), float32, [14]), storage_scope = local; allocate(pad_temp.shared: Pointer(shared float32), float32, [112]), storage_scope = shared; allocate(placeholder.shared: Pointer(shared float32), float32, [2]), storage_scope = shared; attr [IterVar(blockIdx.y: int32, (nullptr), "ThreadIndex", "blockIdx.y")] "thread_extent" = 224; attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 2; attr [IterVar(threadIdx.z: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 { conv2d_nchw_1: Buffer(conv2d_nchw, float32, [4], [], scope="local", align=8)[0] = 0f32 conv2d_nchw_1[2] = 0f32 conv2d_nchw_1[4] = 0f32 conv2d_nchw_1[6] = 0f32 conv2d_nchw_1[8] = 0f32 conv2d_nchw_1[10] = 0f32 conv2d_nchw_1[12] = 0f32 conv2d_nchw_1[1] = 0f32 conv2d_nchw_1[3] = 0f32 conv2d_nchw_1[5] = 0f32 conv2d_nchw_1[7] = 0f32 conv2d_nchw_1[9] = 0f32 conv2d_nchw_1[11] = 0f32 conv2d_nchw_1[13] = 0f32 for (rc.outer: int32, 0, 3) {http://www.devze.com for (ry.outer: int32, 0, 5) { attr [IterVar(threadIdx.z_1: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_1: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_1: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 { pad_temp.shared_1: Buffer(pad_temp.shared, float32, [112], [], scope="shared")[(threadIdx.x_1*7)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*56) + floordiv((threadIdx.x_1*7), 2)))), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 450)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 1)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*56) + floordiv(((threadIdx.x_1*7) + 1), 2)))), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 449)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outejavascriptr*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32) } attr [IterVar(threadIdx.z_2: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_2: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_2: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16; if @tir.likely((threadIdx.x_2 < 2), dtype=bool) { placeholder.shared_1: Buffer(placeholder.shared, float32, [2], [], scope="shared", align=8)[threadIdx.x_2] = placeholder_1[((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5))] } conv2d_nchw_1[0] = (conv2d_nchw_1[0] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[0])) conv2d_nchw_1[2] = (conv2d_nchw_1[2] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[0])) conv2d_nchw_1[4] = (conv2d_nchw_1[4] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[0])) conv2d_nchw_1[6] = (conv2d_nchw_1[6] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[0])) conv2d_nchw_1[8] = (conv2d_nchw_1[8] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[0])) conv2d_nchw_1[10] = (conv2d_nchw_1[10] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[0])) conv2d_nchw_1[12] = (conv2d_nchw_1[12] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[0])) conv2d_nchw_1[1] = (conv2d_nchw_1[1] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[1])) conv2d_nchw_1[3] = (conv2d_nchw_1[3] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[1])) conv2d_nchw_1[5] = (conv2d_nchw_1[5] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[1])) conv2d_nchw_1[7] = (conv2d_nchw_1[7] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[1])) conv2d_nchw_1[9] = (conv2d_nchw_1[9]编程 + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[1])) conv2d_nchw_1[11] = (conv2d_nchw_1[11] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[1])) conv2d_nchw_1[13] = (conv2d_nchw_1[13] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[1])) attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 { pad_temp.shared_1[(threadIdx.x_1*7)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*56) + floordiv(((threadIdx.x_1*7) + 1), 2)))), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 449)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32) } attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16; if @tir.likely((threadIdx.x_2 < 2), dtype=bool) { placeholder.shared_1[threadIdx.x_2] = placeholder_1[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 1)] } conv2d_nchw_1[0] = (conv2d_nchw_1[0] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[0])) conv2d_nchw_1[2] = (conv2d_nchw_1[2] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[0])) conv2d_nchw_1[4] = (conv2d_nchw_1[4] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[0])) conv2d_nchw_1[6] = (conv2d_nchw_1[6] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[0])) conv2d_nchw_1[8] = (conv2d_nchw_1[8] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[0])) conv2d_nchw_1[10] = (conv2d_nchw_1[10] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[0])) conv2d_nchw_1[12] = (conv2d_nchw_1[12] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[0])) conv2d_nchw_1[1] = (conv2d_nchw_1[1] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[1])) conv2d_nchw_1[3] = (conv2d_nchw_1[3] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[1])) conv2d_nchw_1[5] = (conv2d_nchw_1[5] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[1])) conv2d_nchw_1[7] = (conv2d_nchw_1[7] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[1])) conv2d_nchw_1[9] = (conv2d_nchw_1[9] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[1])) conv2d_nchw_1[11] = (conv2d_nchw_1[11] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[1])) conv2d_nchw_1[13] = (conv2d_nchw_1[13] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[1])) attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 { pad_temp.shared_1[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32) } attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16; if @tir.likely((threadIdx.x_2 < 2), dtype=bool) { placeholder.shared_1[threadIdx.x_2] = placeholder_1[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 2)] } conv2d_nchw_1[0] = (conv2d_nchw_1[0] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[0])) conv2d_nchw_1[2] = (conv2d_nchw_1[2] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[0])) conv2d_nchw_1[4] = (conv2d_nchw_1[4] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[0])) conv2d_nchw_1[6] = (conv2d_nchw_1[6] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[0])) conv2d_nchw_1[8] = (conv2d_nchw_1[8] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[0])) conv2d_nchw_1[10] = (conv2d_nchw_1[10] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[0])) conv2d_nchw_1[12] = (conv2d_nchw_1[12] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[0])) conv2d_nchw_1[1] = (conv2d_nchw_1[1] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[1])) conv2d_nchw_1[3] = (conv2d_nchw_1[3] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[1])) conv2d_nchw_1[5] = (conv2d_nchw_1[5] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[1])) conv2d_nchw_1[7] = (conv2d_nchw_1[7] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[1])) conv2d_nchw_1[9] = (conv2d_nchw_1[9] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[1])) conv2d_nchw_1[11] = (conv2d_nchw_1[11] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[1])) conv2d_nchw_1[13] = (conv2d_nchw_1[13] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[1])) attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 { pad_temp.shared_1[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 6)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*56) + floordiv(((threadIdx.x_1*7) + 9), 2)) < 113)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 441)], 0f32, dtype=float32) } attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16; if @tir.likely((threadIdx.x_2 < 2), dtype=bool) { placeholder.shared_1[threadIdx.x_2] = placeholder_1[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 3)] } conv2d_nchw_1[0] = (conv2d_nchw_1[0] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[0])) conv2d_nchw_1[2] = (conv2d_nchw_1[2] + (padphp_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[0])) conv2d_nchw_1[4] = (conv2d_nchw_1[4] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[0])) conv2d_nchw_1[6] = (conv2d_nchw_1[6] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[0])) conv2d_nchw_1[8] = (conv2d_nchw_1[8] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[0])) conv2d_nchw_1[10] = (conv2d_nchw_1[10] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[0])) conv2d_nchw_1[12] = (conv2d_nchw_1[12] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[0])) conv2d_nchw_1[1] = (conv2d_nchw_1[1] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[1])) conv2d_nchw_1[3] = (conv2d_nchw_1[3] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[1])) conv2d_nchw_1[5] = (conv2d_nchw_1[5] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[1])) conv2d_nchw_1[7] = (conv2d_nchw_1[7] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[1])) conv2d_nchw_1[9] = (conv2d_nchw_1[9] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[1])) conv2d_nchw_1[11] = (conv2d_nchw_1[11] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[1])) conv2d_nchw_1[13] = (conv2d_nchw_1[13] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[1])) attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 { pad_temp.shared_1[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 5)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.yjavascript + ry.outer) < 226)) && (((blockIdx.x*56) + floordiv(((threadIdx.x_1*7) + 9), 2)) < 113)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 441)], 0f32, dtype=float32) pad_temp.shared_1[((threadIdx.x_1*7) + 6)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*56) + floordiv((threadIdx.x_1*7), 2)) < 108)), placeholder[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 440)], 0f32, dtype=float32) } attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1; attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16; if @tir.likely((threadIdx.x_2 < 2), dtype=bool) { placeholder.shared_1[threadIdx.x_2] = placeholder_1[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 4)] } conv2d_nchw_1[0] = (conv2d_nchw_1[0] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[0])) conv2d_nchw_1[2] = (conv2d_nchw_1[2] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[0])) conv2d_nchw_1[4] = (conv2d_nchw_1[4] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[0])) conv2d_nchw_1[6] = (conv2d_nchw_1[6] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[0])) conv2d_nchw_1[8] = (conv2d_nchw_1[8] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[0])) conv2d_nchw_1[10] = (conv2d_nchw_1[10] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[0])) conv2d_nchw_1[12] = (conv2d_nchw_1[12] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[0])) conv2d_nchw_1[1] = (conv2d_nchw_1[1] + (pad_temp.shared_1[threadIdx.x]*placeholder.shared_1[1])) conv2d_nchw_1[3] = (conv2d_nchw_1[3] + (pad_temp.shared_1[(threadIdx.x + 16)]*placeholder.shared_1[1])) conv2d_nchw_1[5] = (conv2d_nchw_1[5] + (pad_temp.shared_1[(threadIdx.x + 32)]*placeholder.shared_1[1])) conv2d_nchw_1[7] = (conv2d_nchw_1[7] + (pad_temp.shared_1[(threadIdx.x + 48)]*placeholder.shared_1[1])) conv2d_nchw_1[9] = (conv2d_nchw_1[9] + (pad_temp.shared_1[(threadIdx.x + 64)]*placeholder.shared_1[1])) conv2d_nchw_1[11] = (conv2d_nchw_1[11] + (pad_temp.shared_1[(threadIdx.x + 80)]*placeholder.shared_1[1])) conv2d_nchw_1[13] = (conv2d_nchw_1[13] + (pad_temp.shared_1[(threadIdx.x + 96)]*placeholder.shared_1[1])) } } compute_1: Buffer(compute, float32, [501760], [])[((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x)] = max(conv2d_nchw_1[0], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 16)] = max(conv2d_nchw_1[2], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 32)] = max(conv2d_nchw_1[4], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 48)] = max(conv2d_nchw_1[6], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 64)] = max(conv2d_nchw_1[8], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 80)] = max(conv2d_nchw_1[10], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 96)] = max(conv2d_nchw_1[12], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50176)] = max(conv2d_nchw_1[1], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50192)] = max(conv2d_nchw_1[3], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50208)] = max(conv2d_nchw_1[5], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50224)] = max(conv2d_nchw_1[7], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50240)] = max(conv2d_nchw_1[9], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50256)] = max(conv2d_nchw_1[11], 0f32) compute_1[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50272)] = max(conv2d_nchw_1[13], 0f32) } }
总结
本教程已经展示了如下内容:
- 如何使用 TOPI API 操作 numpy 风格的算子。
- TOPI 如何促进上下文的通用 schedule 和算子融合,来生成优化的内核代码。
下载 Python 源代码:intro_topi.py
下载 Jupyter Notebook:intro_topi.ipynb
以上就是TOPI如何使TVM代码不那么样板化的详细内容,更多关于TOPI TVM代码的资料请关注我们其它相关文章!
精彩评论