目录
- 导入库和数据
- 定义模型结构
- 定义训练函数
- 定义测试函数
- 训练模型并评估训练结果
导入库和数据
GAT(图注意力网络)是常见的图神经网络结构之一,它使用注意力机制来对节点进行特征加权,并考虑其邻居节点的交互。
首先,我们需要导入PyTorch和PyG库,然后准备好我们的数据。例如,我们可以使用以下方式生成一个简单的随机数据集:
from torch_geometric.datasets import Planetoid dataset = Planetoid(root='/tmp/Cora', name='Cora') train_loader = DataLoader(dataset[0], BATch_size=128, shuffle=True) test_loader = DataLoader(dataset[0],android batch_size=128, shuffle=False)
其中, Planetoid
是PyG提供的图形数据集之一。这里我们选择了 Cora
数据集并存储到 /tmp/Cora
文件夹中。然后我们将该数据集分成训练集和测试集,设置相应的加载器。
定义模型结构
接下来,我们需要定义GAT模型的结构。通过PyTorch和PyG,我们可以自己定义完整的GAT模型或者利用现有的库函数快速构建模型。在这里,我们将使用 torch_geometric.nn.GATConv
函数逐层堆叠多个图注意力层来实现GAT模型。以下是GAT模型定义的示例代码:
import torch.nn.functional as F from torch_geometric.nn import GATConv class Net(torch.nn.Moduljavascripte): def __编程客栈init__(self, in_channels, out_channels): super(Net, self).__init__() self.num_layers = 2 self.conv1 = GATConv(in_channels=in_channels, out_channels=16, heads=8, dropout=0.6) self.conv2 = GATConv(in_channels=16*8, out_channels=out_channels, heads=1, concat=False, dropout=0.6) def forward(self, data): x, edge_index = data.x, data.edge_index x = F.dropout(x, p=0.6, training=self.training) x = F.elu(self.conv1(x, edge_index)) x = F.dropout(x, p=0.6, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1)
上述代码中,我们定义了一个 Net
类用于构建GAT网络,接收输入通道数和输出通道数作为参数。例如,我们可以按照以下方式创建一个将 CORD 参量作为输入特征向量大小、64 个隐藏节点(每个注意力头)。并将数字类别作为输出大小的GAT模型:
model = Net(in_channels=dataset.num_features, out_channels=dataset.num_classes)
其中 num_features
和 num_classes
是PyG数据集中包含的属性。
定义训练函数
然后,我们需要定义训练函数来训练我们的GAT神经网络。在这里,我们将使用交叉熵损失和Adam优化器进行训练,并在每一个epoch结束时计算准确率并打印出来。以下是训练函数的示例代码:
import torch.optim as optim from tqdm import tqdm def train(model, loader, optimizer, loss_fn): model.train() correct = 0 total_loss = 0 for data in tqdm(loader, desc='Training'): optimizer.zero_grad() out = model(data) pred = out.argmax(dim=1) loss = loss_fn(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() total_loss += loss.item() * data.num_graphs correct += pred[data.train_mask].eq(data.y[data.train_mask]).sum().item() return total_loss / len(loader.dataset), correct / len(data.train_mask)
在上述代码中,我们遍历加载器中的每个数据批次,并对模型进行培训。对于每个图数据批次,我们计算网络输出、预测和损失,然后通过反向传播来更新权重。最后,我们将总损失和正确率记录下来并返回。
定javascript义测试函数
接下来,我们还需要定义测试函数来测试我们的GAT神经网络性能表现。我们将利用与训练函数相同的输出参数进行测试,并打印出最终的测试准确率。以下是测试函数的示例代码:
def test(model, loader, loss_fn): model.eval() correct = 0 total_loss = 0 with torch.no_grad(): for data in tqdm(loader, desc='Testing'): out = model(data) pred = out.argmax(dim=1) loss = loss_fn(out[data.test_mask], data.y[data.test_mask]) total_loss += loss.item() * data.num_graphs correct += pred[data.test_mask].eq(data.y[data.test_mask]).sum().item() return total_loss 开发者_Go入门/ len(loader.dataset), correct / len(data.test_mask)
在上述代码中,我们对测试数据集中的所有数据进行了循环,并计算网络的输出和预测。我们记录下总损失和正确分类的数据量,并返回损失和准确率之间的比率。
训练模型并评估训练结果
最后,我们可以使用前面定义过的函数来定义主函数,从而完成GAT神经网络的训练和测试。以下是主函数的示例代码:
if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Net(in_channels=dataset.num_features, out_channels=dataset.num_classes).to(device) train_loader = DataLoader(dataset[0], batch_size=128, shuffle=True) test_loader =www.devze.com DataLoader(dataset[0], batch_size=128, shuffle=False) optimizer = optim.Adam(model.parameters(), lr=0.01) loss_fn = nn.CrossEntropyLoss() for epoch in range(1, 201): train_loss, train_acc = train(model, train_loader, optimizer, loss_fn) test_loss, test_acc = test(model, test_loader, loss_fn) print(f'Epoch {epoch:03d}, Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, ' f'Test Loss: {test_loss:.4f}, Test Acc: {test_acc:.4f}')
通过上述代码,我们就可以完成GAT神经网络的训练和测试。我们使用 DataLoader
函数进行数据加载,设置学习率、损失函数、训练轮数等超参数。最后,我们可以在屏幕上看到每个时代的准确率和损失值,并通过它们评估模型的训练表现。
以上就是详解Pytorch+PyG实现GAT过程示例的详细内容,更多关于Pytorch PyG实现GAT的资料请关注我们其它相关文章!
精彩评论