目录
- 开始之前
- 分析
- 从何处获取类型信息
- 如何实现赋值操作?
- 总结
开始之前
在开始分析原理之前,有必要问一下自己一个问题:
反射是什么?以及其作用是什么?
不论在哪种语言中,我们所提到的反射功能,均指开发者可以在运行时通过调用反射库来获取到来获取到指javascript定对象类型信息,通常类型信息中会包含对象的字段/方法等信息。并且,反射库通常会提供方法的调用, 以及字段赋值等功能。
使用反射可以帮助我们避免写大量重复的代码, 因此反射功能常见用于ORM框架, 以及序列化何反序列化框架,除此之外在Java中反射还被应用到了AOP等功能中。
了解完反射的功能之后,我们再引申一个问题:
假如你开发了一种语言, 该如何为开发者提供反射的功能?
首先,我们知道反射的核心的功能有:
- 类型信息获取
- 对象字段访问/赋值
- 方法调用
因此实际作为语言的开发者(假设),我们要解决的问题有:
- 如何存储并获取到对象类型信息?
- 如何定位到对象字段的内存地址?
注: 只要知道了对象字段的内存地址配合上类型信息,我们便可以实现赋值与访问的操作。
- 如何定位到方法的内存地址?
注:代码在内存中也是数据,因此只需要定位到代码所在的地址,便可解决方法调用的问题
分析
从何处获取类型信息
如果你熟悉Go的reflect(反射)库, 相信你或多或少的听过反射三原则, 即:
- 从
interface{}
可以反射出反射对象 - 从反射对象中可以获取到
interface{}
- 要修改反射对象, 其值必须可设置
根据以上三原则不难看出interface{}
是实现反射功能的基石, 那么这是为什么呢?
要回答这个问题,我们了解interface{}
的本质是什么。
interface{}
本质上Go提供的一种数据类型, 与其他数据类型不同的是, interface{}
会为我们提供变量的类型信息以及变量所在的内存地址。
在Runtime
中使用结构体来表示interface{}
, 其结构如下所示:
type emptyInterface struct { typ *rtype word unsafe.Pointer }
该结构体只有两个字段, 分别是:
typ
变量的类型信息, 这一步骤在编译步骤便可确定下来word
指向变量数据的指针, 这一步骤在运行时进行确定
接下来我们通过反编译下文的代码, 来观察当把一个变量转换成interface{}
的时候都发生了什么:
package main import "fmt" func main() { s := 1024 var a interface{} = &s fmt.Println(a) }
执行以下命令, 获取汇编代码
go tool compile -N -S .\main.www.devze.comgo
以下代码即为将字符串赋值给interface{}
类型的变量a
的对应汇编代码
0x0057 00087 (.\main.go:7) MOVQ "".&s+104(SP), AX 0x005c 00092 (.\main.go:7) MOVQ AX, ""..autotmp_9+88(SP) 0x0061 00097 (.\main.go:7) LEAQ type.*int(SB), CX 0x0068 00104 (.\main.go:7) MOVQ CX, "".a+144(SP) 0x0070 00112 (.\main.go:7) MOVQ AX, "".a+152(SP)
相信即便你不熟悉汇编,但至少也发现了, 以上代码做了如编程下操作:
- 获取变量
s
的地址, 保存到AX
寄存器, 并往a+144
的地址写入数据 - 获取变量
s
的类型信息(type.*int
),保存到CX
寄存器, 并往a+152
的地址写入数据
注:感兴趣的读者可以把取地址的操作去掉,再看看有什么不同
此外, 我们还可以通过指针数据类型转换来获取到interface{}
中的数据来侧面验证一下。
注: unsafe.Pointer 可以转换成任意类型的指针
type EmptyInterface struct { typ unsafe.Pointer word unsafe.Pointer } func getWordPtr(i interface{}) unsafe.Pointer { eface := *(*EmptyInterface)(unsafe.Pointer(&i)) return eface.word } func Test_GetWordPtr(t *testing.T) { str := "Hello, KeSan" strPtr := &str //此处由编译器做了类型转换 *stri编程客栈ng -> interface{} wordPtr := getWordPtr(strPtr) t.Logf("String Ptr: %p", strPtr) t.Logf("Word Ptr: %p", wordPtr) }
输入如下所示:
因此,不难推出reflect.TypeOf
的实现实际上就是获取interface{}
中type
信息,并返回给开发人员。其代码如下所示:
func TypeOf(i interface{}) Type { eface := *(*emptyInterface)(unsafe.Pointer(&i)) return toType(eface.typ) } // 将 *rtype 转成接口类型的Type func toType(t *rtype) Type { if t == nil { return nil } return t }
再进一步我们可以来看看类型信息中都包含了什么?
结构体rtype
描述了基础的类型信息,其字段如下所示:
type rtype struct { size uintptr ptrdata uintptr // number of bytes in the type that can contain pointers hash uint32 // hash of type; avoids computation in hash tables tflag tflag // extra type information flags align uint8 // alignment of variable with this type fieldAlign uint8 // alignment of struct field with this type kind uint8 // enumeration for C // function for comparing objects of this type // (ptr to object A, ptr to object B) -> ==? equal func(unsafe.Pointer, unsafe.Pointer) bool gcdata *byte // garbage collection data str nameOff // string form ptrToThis typeOff // type for pointer to this type, may be zero }
rtype
结构体包含了golang中所有数据类型的基础类型信息, 对于不同的数据类型其类型信息会有略微的差异。
// 结构体的类型信息 type structType struct { rtype pkgPath name fields []structField // sorted by offset } // channel 的类型信息 type chanType struct { rtype elem *rtype // channel element type dir uintptr // channel direction (ChanDir) }
如何实现赋值操作?
赋值操作的本质上是往对应的内存地址写入数据, 因此我们有必要简单了解一下结构体在内存中的布局方式, 以一个最为简单坐标的结构体为例,其结构体如下所示:
type Coordinate struct { X int64 Y int64 Z int64 }
其在内存中的表现为一段大小为24字节的连续内存,具体如下图所示
因此,我们实际上要做的就是获取到结构体的首地址之后,根据各个字段相对首字段的偏移地址计算出其在内存中地址。
实际上在Runtime
提供的类型信息中,已经包含了各个字段的偏移以及类型信息,我们可以具体的来看一下反射功能获取字段Field
的实现。
func (v Value) Field(i int) Value { if v.kind() != Struct { panic(&ValueError{"reflect.Value.Field", v.kind()}) } // 获取类型信息 tt := (*structType)(unsafe.Pointer(v.typ)) if uint(i) >= uint(len(tt.fields)) { panic("reflect: Field index out of range") } // 获取字段信息 field := &tt.fields[i] typ := field.typ // 继承结构体的部分flag信息 fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind()) if !field.name.isExported() { if field.embedded() { fl |= flagEmbedRO } else { fl |= flagStickyRO } } // 根据偏移地址计 + 结构体的首地址 计算出 字段在内存中的地址, 并返回Value对象 ptr := add(v.ptr, field.offset(), "same as non-rephpflect &v.field") return Value{typ, ptr, fl} }
了解到如何获取字段在内存中的地址之后,我们再来看看赋值操作是如何实现。
如以下代码SetInt
所示, 本质上还是一些指针的转换以及解引用。
func (v Value) SetInt(x int64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetInt", v.kind()}) case Int: *(*int)(v.ptr) = int(x) case Int8: *(*int8)(v.ptr) = int8(x) case Int16: *(*int16)(v.ptr) = int16(x) case Int32: *(*int32)(v.ptr) = int32(x) case Int64: *(*int64)(v.ptr) = x } }
那么,肯定有同学会问,为啥你一直都在讲结构体啊,那字符串(string
), 切片(slice
), map
呢?
实际上这些Go
的内建的数据类型,在Runtime
中的表现形式也是结构体, 我们可以在reflect
包中找到如下定义:
// 切片头 type SliceHeader struct { Data uintptr // 数组的指针地址 Len i开发者_Python教程nt // 数组长度 Cap int // 数组容量 } // 字符串头 type StringHeader struct { Data uintptr // 字节数组的指针地址 Len int // 字节数组的长度 }
因此,通过反射来操作切片和字符串本质上还是操作结构体。
总结
interface{}
是一种数据类型, 其存储了变量的类型信息与数据指针,其中类型信息是在编译期间确定下来的Golang
反射的原理就是从interface{}
中获取到类型信息以及变量的指针,从而实现类型获取以及赋值的功能
以上就是Go reflect 反射原理示例详解的详细内容,更多关于Go reflect 反射原理的资料请关注我们其它相关文章!
精彩评论