开发者

Python可视化函数plt.scatter详解

开发者 https://www.devze.com 2023-04-12 09:18 出处:网络 作者: 无水先生
目录一、说明二、函数和参数详解2.1 scatter函数原型2.2 参数详解2.3 其中散点的形状参数marker如下:2.4 其中颜色参数c如下:三、画图示例3.1 关于坐标x,y和s,c3.2 多元高斯的情况3.3  绘制例子3.4 绘图
目录
  • 一、说明
  • 二、函数和参数详解
    • 2.1 scatter函数原型
    • 2.2 参数详解
    • 2.3 其中散点的形状参数marker如下:
    • 2.4 其中颜色参数c如下:
  • 三、画图示例
    • 3.1 关于坐标x,y和s,c
    • 3.2 多元高斯的情况
    • 3.3  绘制例子
    • 3.4 绘图例3
    • 3.5  同心绘制
    • 3.6 有标签绘制
    • 3.7 直线划分
    • 3.8 曲线划分

一、说明

       关于matplotlib的scatter函数有许多活动参数,如果不专门注解,是无法掌握精髓的,本文专门针对scatter的参数和调用说起,并配有若干案例。

二、函数和参数详解

2.1 scatter函数原型

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)

2.2 参数详解

属性参数意义
坐标x,y输入点列的数组,长度都是size
点大小s点的直径数组,默认直径20,长度最大size
点颜色c点的颜色,默认蓝色 'b',也可以javascript是个 RGB 或 RGBA 二维行数组。
点形状marker点的样式,默认小圆圈 'o'。
调色板cmap

Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组时才使用。如果没有申明就是 image.cmap。

亮度(1)normNormalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。
亮度(2)vmin,vmax亮度设置,在 norm 参数存在时会忽略。
透明度alpha透明度设置,0-1 之间,默认 None,即不透明
线linewidths标记点的长度
颜色

edgecolors

颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

plotnonfinite

布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

**kwargs

其他参数。

2.3 其中散点的形状参数marker如下:

Python可视化函数plt.scatter详解

Python可视化函数plt.scatter详解

2.4 其中颜色参数c如下:

Python可视化函数plt.scatter详解

三、画图示例

3.1 关于坐标x,y和s,c

import numpy as np
import matplotlib.pyplot as plt
 
# Fixing random state for reproducibility
np.random.seed(19680801)
 
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)          # 颜色可以随机
area = (30 * np.random.rand(N)http://www.devze.com)**2  # 点的宽度30,半径15
 
plt.scatter(x, y, s=area, c=colors, alpha=0.5)  
plt.show()

Python可视化函数plt.scatter详解

        注意:以上核心语句是:

plt.scatter(x, y, s=area, c=colors, alpha=0.5, marker=",")

        其中:x,y,s,c维度一样就能成。

3.2 多元高斯的情况

import numpy as np
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(8,6))
#Generating a Gaussion dataset:
#creating random vectors from the multivariate normal distribution
#given mean and covariance
mu_vec1=np.array([0,0])
cov_mat1=np.array([[1,0],[0,1]])
X=np.random.multivariate_normal(mu_vec1,cov_mat1,500)
R=X**2
R_sum=R.sum(axis=1)
plt.scatter(X[:,0],X[:,1],color='green',marker='o', =32.*R_sum,edgecolor='black',alpha=0.5)
 
plt.show()

Python可视化函数plt.scatter详解

3.3  绘制例子

from matplotlib import pyplot as plt
import numpy as np
# Generating a Gaussion dTset:
#Creating random vectors from the multivaritate normal distribution
#givem mean and covariance
 
mu_vecl = np.array([0, 0])
cov_matl = np.array([[2,0],[0,2]])
 
x1_samplandroides = np.random.multivariate_normal(mu_vecl, cov_matl,100)
x2_samples = np.random.multivariate_normal(mu_vecl+0.2, cov_matl +0.2, 100)
x3_samples = np.random.multivariate_normal(mu_vecl+0.4, cov_matl +0.4, 100)
 
plt.figure(figsize = (8, 6))
 
plt.scatter(x1_samples[:,0], x1_samples[:, 1], marker='x',
           color = 'blue', alpha=0.7, label = 'x1 samples')
plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o',
           color ='green', alpha=0.7, label = 'x2 samples')
plt.scatter(x3_samples[:,0], x1_samples[:,1], m开发者_开发培训arker='^',
           color ='red', alpha=0.7, label = 'x3 samples')
plt.title('Basic scatter plot')
plt.ylabel('variable X')
plt.xlabel('Variable Y')
plt.legend(loc = 'upper right')
 
plt.show()
 
 
    import matplotlib.pyplot as plt
    
    fig,ax = plt.subplots()
    
    ax.plot([0],[0], marker="o",  markersize=10)
    ax.plot([0.07,0.93],[0,0],    linewidth=10)
    ax.scatter([1],[0],           s=100)
    
    ax.plot([0],[1], marker="o",  markersize=22)
    ax.plot([0.14,0.86],[1,1],    linewidth=22)
    ax.scatter([1],[1],           s=22**2)
    
    plt.show()
![image.png](http://upload-images.jianshu.io/upload_images/8730384-8d27a5015b37ee97.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
 
    import matplotlib.pyplot as plt
    
    for dpi in [72,100,144]:
    
        fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
        ax.set_title("fig.dpi={}".format(dpi))
    
        ax.set_ylim(-3,3)
        ax.set_xlim(-2,2)
    
        ax.scatter([0],[1], s=10**2, 
                   marker="s", linewidth=0, label="100 points^2")
        ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
    http://www.devze.com               marker="s", linewidth=0, label="100 pixels^2")
    
        ax.legend(loc=8,framealpha=1, fontsize=8)
    
        fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
    
    plt.show() 

Python可视化函数plt.scatter详解

3.4 绘图例3

import matplotlib.pyplot as plt
 
for dpi in [72,100,144]:
 
    fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
    ax.set_title("fig.dpi={}".format(dpi))
 
    axhttp://www.devze.com.set_ylim(-3,3)
    ax.set_xlim(-2,2)
 
    ax.scatter([0],[1], s=10**2, 
               marker="s", linewidth=0, label="100 points^2")
    ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
               marker="s", linewidth=0, label="100 pixels^2")
 
    ax.legend(loc=8,framealpha=1, fontsize=8)
 
    fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
 
plt.show() 

Python可视化函数plt.scatter详解

3.5  同心绘制

plt.scatter(2, 1, s=4000, c='r')
plt.scatter(2, 1, s=1000 ,c='b')
plt.scatter(2, 1, s=10, c='g')

Python可视化函数plt.scatter详解

3.6 有标签绘制

import matplotlib.pyplot as plt
 
x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74,0.93]
y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25,0.55]
 
fig = plt.figure(figsize = (8,5))
 
plt.scatter(x_coords, y_coords, marker = 's', s = 50)
for x, y in zip(x_coords, y_coords):
    plt.annotate('(%s,%s)'%(x,y), xy=(x,y),xytext = (0, -10), textcoords = 'offset points',ha = 'center', va = 'top')
plt.xlim([0,1])
plt.ylim([0,1])
plt.show()

Python可视化函数plt.scatter详解

3.7 直线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution
 
import numpy as np
from matplotlib import pyplot as plt
 
def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
#    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
    return -x_1 + 1
 
# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance
 
mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR
 
mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector
 
# Main scatter plot and plot annotation
 
f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')
 
#Adding decision boundary to plot
 
x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)
 
x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)
 
plt.show()

Python可视化函数plt.scatter详解

3.8 曲线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution
 
import numpy as np
from matplotlib import pyplot as plt
 
def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
 
# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance
 
mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR
 
mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector
 
# Main scatter plot and plot annotation
 
f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')
 
#Adding decision boundary to plot
 
x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)
 
x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)
 
plt.show()

Python可视化函数plt.scatter详解

到此这篇关于python可视化函数plt.scatter详解的文章就介绍到这了,更多相关Python plt.scatter内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

精彩评论

暂无评论...
验证码 换一张
取 消