开发者

Gradio机器学习模型快速部署工具接口状态

开发者 https://www.devze.com 2023-04-04 09:45 出处:网络 作者: Livingbody
目录1.全局状态2.会话状态 原文: gradio.app/interface-s… 1.全局状态 例子来解释
目录
  • 1.全局状态
  • 2.会话状态

原文: gradio.app/interface-s…

1.全局状态

例子来解释

import gradio as gr
scores = []
def track_score(score):
    scores.append(score)
    top_scores = sorted(scores, reverse=True)[:3]
    return top_scores
demo = gr.Interface(
    track_score, 
    gr.Number(label="Score"), 
    gr.jsON(label="Top Scores")
)
demo.launch()

如上所述,scores,就可以在某函数中访问。

  • 多用户访问,每次访问的分数都保存到scores列表
  • 并并返回前三的分数

2.会话状态

Gradio 支持的另一种数据持久化类型是会话状态,其中数据在页面会话中跨多个提交持久化。但是,数据_不会_在模型的不同用户之间共享。要在会话状态中存储数据,您需要做三件事:

  • 将一个额外的参数传递到您的函数中,该参数表示界面的状态。
  • 在函数结束时,返回状态编程客栈的更新值作为额外的返回值。
  • 创建时添加'state'输入和输出组件'state'``Interface

聊天机器人是一个您需要www.devze.com会话状态的示例 - 您想要访问用户以前提交的内容,但您不能将聊天历史存储在全局变量中,因为那样聊天历史会在不同用户之间混乱。

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
def user(message, history):
    return "", history + [[message, None]]
#     bot_message = random.choice(["Yes", "No"])
#     history[-1][1] = bot_message
#     time.sleep(1)
#     return history
# def predict(input, history=[]):
#     # tokenize the new input sentence
def bot(history):
    user_message = history[-1][0]
    new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, retur编程n_tensors='pt')
    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    # generate a response 
    history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eandroidos_token_id).tolist()
    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # androidconvert to tuples o开发者_开发学习f list
    return history
with gr.blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()

Gradio机器学习模型快速部署工具接口状态

以上就是Gradio机器学习模型快速部署工具接口状态的详细内容,更多关于Gradio部署接口状态的资料请关注我们其它相关文章!

0

精彩评论

暂无评论...
验证码 换一张
取 消