开发者

python使用pandas进行量化回测

开发者 https://www.devze.com 2022-12-13 13:17 出处:网络 作者: 神出鬼没,指的就是我!
下面文章描述可能比excel高级一点,距离backtrader这些框架又差一点。做最基础的测试可以,如果后期加入加仓功能,或者是止盈止损等功能,很不合适。只能做最简单的技术指标测试。

下面文章描述可能比excel高级一点,距离backtrader这些框架又差一点。做最基础的测试可以,如果后期加入加仓功能,或者是止盈止损等功能,很不合适。只能做最简单的技术指标测试。

导包,常用包导入:

import os
import akshare as ak
import requests
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import talib as ta
%matplotlib inline
plt.style.use("ggplot")

获取数据,本文使用akshare中债券数据为对象分析:

bond_zh_hs_daily_df = ak.bond_zh_hs_daily(symbol="sh010107")

添加指标:

def backtest_trend_strategy(ohlc: pd.DataFrame,
              fast_period: int = 50,
              slow_period: int = 200,
              threshold: float = 1.0) -> pd.DataFrame:
  """封装向量化回测的逻辑""编程客栈"
  # 计算指标
  ohlc["fast_ema"] = talib.EMA(ohlc.close, fast_period)
  ohlc["slow_ema"] = talib.EMA(ohlc.close, slow_period)
  ohlc["pct_diff"] = (ohlc["fast_ema"] / ohlc["slow_ema"] - 1) * 100

  # 生成信号,1表示做多,-1表示做空,0表示空仓
  ohlc["signal"] = np.where(ohlc["pct_diff"] > threshold, 1, 0)
  ohlc["signal"] = np.where(ohlc["pct_diff"] < -threshold, -1, ohlc["signal"])

  # 计算策略收益率
  ohlc["returns"] = np.log(ohlc["close"] / ohlc["close"].shift(1))
  ohlc["strategy"] = ohlc["signal"].shift(1) * ohlc["returns"]
  ohlc["strategy_returns"] = ohlc["strategy"].cumsum()
 
  return ohlc

运行策略,并绘制图片:

data = strategy1(data)


fig, ax = plt.subplots(nrows=3, ncols=1, figsize=(12, 15), sharex=True)

ax[0].plot(data.index, data["close"])
ax[0].plot(data.index, data["fast_ema"])
ax[0].plot(data.index, data["slow_ema"])
ax[0].set_title("Price and Indicators")

ax[1].plot(data.index, data["signal"])
ax[1].set_title("Strategy Position"http://www.cppcns.com)

data[["returns", "strategy"]].cumsum().plot(ax=ax[2], title="Strategy Return")

python使用pandas进行量化回测

参数优化:

# 选编程客栈择核心参数和扫描区间,其它参数保持不变
fast_period_rng = np.arange(5, 101, 5)

total_return = []
for fast_period in fast_period_rng:
  ohlc = data.filter(["open", "high", "low", "close"])
  res = backtest_trend_strategy(ohlc, fast_period, 200, 1.0)
  total_return.append(res["strategy_returns"].iloc[-1])
 

# 散点图:策略收益率 vs 快速均线回溯期
fig, ax编程客栈 = plt.subplots(figsize=(12, 7))
ax.plot(fast_period_rng, total_return, "r-o", markersize=10)
ax.set_title("Strategy Return vs Fast period")
ax.set_xlabel编程客栈("fast_period")
ax.set_ylabel("return(%)")

到此这篇关于python使用pandas进行量化回测的文章就介绍到这了,更多相关pandas进行量化回测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

精彩评论

暂无评论...
验证码 换一张
取 消

关注公众号