开发者

关于keras中卷积层Conv2D的学习记录

开发者 https://www.devze.com 2023-02-22 09:59 出处:网络 作者: 摆烂的CV工程师
目录keras中卷积层Conv2D的学习参数keras中conv2d,conv2dTranspose的Padding详解conv2D演示代码Conv2d演示结论CONV2Dtranspose演示代码总结keras中卷积层Conv2D的学习
目录
  • keras中卷积层Conv2D的学习
    • 参数
  • keras中conv2d,conv2dTranspose的Padding详解
    • conv2D演示代码
    • Conv2d演示结论
    • CONV2Dtranspose演示代码
  • 总结

    keras中卷积层Conv2D的学习

    关于卷积的具体操作不细讲,本文只是自己太懒了不想记手写笔记。

    由于自己接触到的都是图像

    处理相关的工作,因此,在这里只介绍2D卷积。

    keras.layers.convolutional.Conv2D(filters,kernel_size,strides(1,1),
                     padding='valid',
                     data_format=None,
                     dilation_rate=(1,1),
                     activation=None,
                     use_bias=True,
                     kernel_initializer='glorot_uniform',
                     bias_initializer='zeros',
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None)

    此操作将二维向量进行卷nTRjkblHt积,当使用该层编程客栈作为第一层时,应提供input_shape参数。

    参数

    • filters:卷积核的数目(即输出的维度)。
    • kernel_size:单个整数或由两个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数,则表示在各个空间维度的相同长度。
    • strides:单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。任何不为1的strwww.devze.comides均与任何不为1的dilation_rata均不兼容。
    • padding:补0策略,为“valid”, “same”。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。
    • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)。
    • dilation_rate:单个整数或由两个个整数构成的list/tuple,指定dilated convolution中的膨胀比例。任何不为1的dilation_rata均与任何不为1的strides均不兼容。
    • data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channels_last”。
    • use_bias:布尔值,是否使用偏置项。
    • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
    • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
    • kernel_regularizer:施加在权重上的正则项,为Regularizer对象。
    • bias_regularizer:施加在偏置向量上的正则项,为Regwww.devze.comularizer对象。
    • activity_regularizer:施加在输出上的正则项,为Regularizer对象。
    • kernel_constraints:施加在权php重上的约束项,为Constraints对象。
    • bias_constraints:施加在偏置上的约束项,为Constraints对象。

    keras中conv2d,conv2dTranspose的Padding详解

    conv2d和conv2dTranspose属于最常用的层,但在keras的实现中关于padding的部分有点模糊,周末趁着空闲做了一些尝试,来实验padding的valid和same参数在实际过程中如何操作的。

    conv2D演示代码

    conv2D部分

    v_input = np.ones([1,5,5,1])
    kernel = np.ones([3,3])
    st开发者_Python培训ride = 1
    model = Sequential()
    model.add(Conv2D(1, kernel_size=(3, 3),
                     activation='relu',
                     padding="valid" ,  # "same"
                     strides = 1, 
                     # dilation_rate = 1,
                     kernel_initializer = keras.initializers.Ones(),
                     input_shape=v_input.shape[1:]))
    

    其中stride可以尝试多组测试

    padding在valid 和 same 间切换测试

    Conv2d演示结论

    padding 为valid则不进行填充, 根据stride的滑动大小来做平移, 则:

    output_shape = ceil( (input_shape - (kernel_size - 1)) / stride )

    如果是same模式则 会进行左右上下的补齐, 其中左,上依次补齐 flood (kernel_size -1 ) / 2 , 右下补齐ceil (( kernel_size - 1) /2 ) ,补齐后进行的操作就是类似valid下的滑动卷积

    output_shape = ceil (input_shape / stride)
    • ceil表示上取整 
    • flood表示下取整

    CONV2Dtranspose演示代码

    v_input = np.ones([1,5,5,1])
    kernel = np.ones([3,3])
    stride = 1
    model = Sequential()
    model.add(Conv2DTranspose(1, kernel_size=(3, 3),
                     activation='relu',
                     padding="valid" ,  # "same"
                     strides = 1, 
                     # dilation_rate = 1,
                     kernel_initializer = keras.initializers.Ones(),
                     input_shape=v_input.shape[1:]))
    

    如果padding的设置为valid则,保持最小相交的原则上下左右均填充kernel_size大小,如果stride设置为非1,起实际的作用和dilation_rate一样均是在矩阵中进行填充(实际滑动是永远都是1) 具体填充出来的矩阵大小是 (input_size -1) * stride + 1 + 2 * (kernel_size - 1)

    之后就是按照这个矩阵做着类似conv2d valid的卷积 则:

    output_shape = (input_size -1) * stride + 1 + 2 * (kernel_size - 1) - (kernel_size -1) = (input_size - 1) * stride + kernel_size

    关于keras中卷积层Conv2D的学习记录

    如果padding为same的话则output_shape = input_shape * stride

    其中原始矩阵左上padding = ceil (( kernel_size ) /2 )  右下补齐 flood (( kernel_size ) /2 )  这里conv2d

    总结

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

    0

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    关注公众号