目录
- Pytorch统计参数网络参数数量
- Pytorch如何计算网络的参数量
- 总结
Pytorch统计参数网络参数数量
def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num}
Pytorch如何计算网络的参数量
本文以 Dense block 为例,Pytorch 为 DLjs 框架,最终计算模块参数量方法如下:
import torch import torch.nn as nn class Norm_Conv(nn.Module): def __init__(self,in_channel): php super(Norm_Conv,self).__init__() self.layers = nn.Sequential( nn.Conv2d(in_channel,in_channel,3,1,1), nn.ReLU(True), nn.BATchNorm2d(in_channel), nn.Conv2d(in_channel,in_channel,3,1,1), nn.ReLU(True), nn.BatchNorm2d(in_channel), nn.Conv2d(in_channel,in_channel,3,1,1), nn.ReLU(True), nn.BatchNorm2d(in_channel)) def forward(self,input): out = self.layers(input) 开发者_Go开发 return out class Densewww.devze.comBlock_Norm(nn.Module): def __init__(self,in_channel): super(DenpythonseBlock_Norm,self).__init__() self.first_layer = nn.Sequential(nn.Conv2d(in_channel,in_channel,3,1,1), nn.ReLU(True), nn.BatchNorm2d(in_channel)) self.second_layer = nn.Sequential(nn.Conv2d(in_channel*2,in_channel,3,1,1), nn.ReLU(True), nn.BatchNorm2d(in_channel)) javascriptself.third_layer = nn.Sequential( nn.Conv2d(in_channel*3,in_channel,3,1,1), nn.ReLU(True), nn.BatchNorm2d(in_channel)) def forward(self,input): output1 = self.first_layer(input) output2 = self.second_layer(torch.cat((output1,input),dim=1)) output3 = self.third_layer(torch.cat((input,output1,output2),dim=1)) return output3 def count_param(model): param_count = 0 for param in model.parameters(): param_count += param.view(-1).size()[0] return param_count # Get Parameter number of Network in_channel = 128 net1 = Norm_Conv(in_channel) print('Norm Conv parameter count is {}'.format(count_param(net1))) net2 = DenseBlock_Norm(in_channel) print('DenseBlock Norm parameter count is {}'.format(count_param(net2)))
最终结果如下
Norm Conv parameter count is 443520
DenseBlock Norm parameter count is 885888
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
精彩评论