目录
- 前言
- 一、Tree树图
- 二、数据处理
前言
之前写pandas和matplotlib的时候说到了想要出一期Pyechart系列数据可视化的文章。比编程起matplotlib,pyeacharts的图表要丰富而且好看,这取决于它是基于百度团队使用Javascript开发的商业级数据图表。而且pyechart文档全,便于开发和阅读文档,熟练掌握后是一种非常好用的数据可视化的工具之一。当然相比pandas的plot代码会繁琐一些,其中一些操作类方法也是比较复杂的,需要对其有个大概的掌握才能作出满意的图表。
在我之前的文章中也有好几次使用到了pyechart方法,但是我觉得既然是完成一些数据可视化的操作应该就要快速可呈现,作为数据处理能够得到解析出想要的数据就足够了,如果有个业务小组完全可以将这一部分交给前端去渲染就好了,主要还是快速出图表给我们自己看,用于调整代码而已。那么废话不多说了开始吧!
一、Tree树图
pyecharts只能说不愧是国人开发,文档真的给力,不用再去啃生肉那么痛苦了。很多详细的参数看开发文档就可以看明白:pyecharts - A python Echarts Plotting Library built with love.
我们来看它给出的基础例图:
from pyecharts import options as opts from pyecharts.charts import Tree data = [ { "children": [ {"name": "B"}, { "children": [{"children": [{"name": "I"}], "name": "E"}, {"name": "F"}], "name": "C", }, { "children": [ {"children": [{"name": "J"}, {"name": "K"}], "name": "G"}, {"name": "H"}, ], "name": "D", }, ], "name": "A", } ] c = ( Tree() .add("", data) .set_global_opts(title_opts=opts.TitleOpts(title="Tree-基本示例")) .render("tree_base.html") )
此代码会生成一个网页:
看对应的前端源代码:
<!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title>tree_base.html</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> </head> <body> <style type="text/css"> html, body, #container { height: 100%; } body, #container { overflow: hidden; margin: 0; } #iframe { width: 100%; height: 100%; border: none; } </style> <div id="container"> <iframe id="iframe" sandbox="allow-scripts" src="/files/Hivesqlblood/tree_base.html"></ifrhttp://www.devze.comame> </div> </body> </html>
sandbox="allow-scripts"允许添加脚本执行,也就是将我们编写的python转换为了js脚本,通过代码输入端口获取echart的配置:
如果不想生成网页将render("tree_base.html&q开发者_JS开发uot;)改为render_notebook()即可。
树形图有很多种使用场景,比如事件的从属关系,
这里更主要的是数据处理板块,如果我们仅想要将一行列表数据转换为树形图数据结构该如何处理。
二、数据处理
我们拿到展示数据结构为:
[ { "children": [ {"name": "B"}, { "children": [{"children": [{"name": "I"}], "name": "E"}, {"name": "F"}], "name": "C", }, { "children": [ {"children": [{"name": "J"}, {"name": "K"}], "name": "G"}, {"name": "H"}, ], "name": "D", }, ], "name": "A", } ]
也就是结构为 [{"children":[{"naphpme": "B"},{"name": "B"}] ,"name": "temp"}]的类型,我们需要将将数据转换为这个格式数据,就以通用的list来说,如果用树图来表示的话肯定是有一节点为根节点,一部分节点为子节点。就以一个list来说:
list_1=['temp_road_check_20220902', 'dws_crowdsourcing_cs_order_link_mysql', 'track_point_traffic_dev_tk_track_traffic_info_offline']
第一个节点为根节点,其余为子节点。那么我们就可以进行这样分装:
list_1=['temp_road_check_20220902', 'dws_crowdsourcing_cs_order_link_mysql', 'track_point_traffic_dev_tk_track_traffic_info_offlin编程e'] list_children=[] for i in rphpange(len(list_1)-1): children_dict={"name":list_1[i+1]} list_children.append(children_dict) dict_children={"children":list_children,"name": list_1[0]} data=[dict_children]
这样的话就可以形成树形图的格式了:
画图也就为:
最好肯定是使用常态化的思维去封装这个方法,通过数据结构调整方法。
到此这篇关于一文速学Python+Pyecharts绘制树形图的文章就介绍到这了,更多相关Python Pyecharts绘制树形图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论