目录
- 一、实现过程
- 1、准备数据
- 2、设计模型
- 3、构造损失函数和优化器
- 4、训练过程
- 5、结果展示
- 二、参考文献
一、实现过程
1、准备数据
与PyTorch实现多维度特征输入的逻辑回归的方法不同的是:本文使用DataLoader
方法,并继承DataSet抽象类,可实现对数据集进行mini_batch
梯度下降优化。
代码如下:
import torch import numpy as np from torch.utils.data import Dataset,DataLoader class DiabetesDataSet(Dataset): def __init__(self, filepath): xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32) self.len = xy.shape[0] self.x_data = torch.from_numpy(xy[:,:-1]) self.y_data = torch.from_numpy(xy[:,[-1]]) def __getitem__(self, index): return self.x_data[index],self.y_data[inde编程客栈x] def __len__(self): return self.len dataset = DiabetesDataSet('G:/datasets/diabetes/diabetes.csv') train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)
2、设计模型
class Model(torch.nn.Module): def __init__(self): su编程客栈per(Model,self).__init__() self.linear1 = torch.nn.Linear(8,6) www.cppcns.com self.linear2 = torch.nn.Linear(6,4) self.linear3 = torch.nn.Linear(4,1) self.activate = torch.nn.Sigmoid() def forwawww.cppcns.comrd(self, x): x = self.activate(self.linear1(x)) x = self.activate(self.linear2(x)) x = self.activate(self.linear3(x)) return x model = Model()
3、构造损失函数和优化器
criterion = torch.nn.BCELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
4、训练过程
每次拿出mini_batch个样本进行训练,代码如下:
epoch_list = [] loss_list = [] for epoch in range(100): count = 0 loss1 = 0 for i, data in enumerate(train_loader,0): # 1.Prepare data 编程客栈 inputs, labels = data # 2.Forward y_pred = model(inputs) loss = criterion(y_pred,labels) print(epoch,i,loss.item()) count += 1 loss1 += loss.item() # 3.Backward optimizer.zero_grad() loss.backward() # 4.Update optimizer.step() epoch_list.append(epoch) loss_list.append(loss1/count)
5、结果展示
plt.plot(epoch_list,loss_list,'b') plt.xlabel('epoch') plt.ylabel('loss') plt.grid() plt.show()
二、参考文献
- [1] https://www.bilibili.com/video/BV1Y7411d7Ys?p=8
到此这篇关于PyTorch加载数据集梯度下降优化的文章就介绍到这了,更多相关PyTorch加载数据集内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论