I have a function, let's say for example,
D[x^2*Exp[x^2], {x, 6}] /. x -> 0
And I want to replace 6 by a general integer n
,
Or cases like the following:
Limit[Limit[D[D[x /((-1 + x) (1 - y) (-1 + x + x y)), {x, 3}], {y, 5}], 开发者_C百科{x -> 0}], {y -> 0}]
And I want to replace 3 and 5 by a general integer m
and n
respectively.
How to solve these two kinds of problems in general in mma?
Many thanks.
Can use SeriesCoefficient, sometimes.
InputForm[n! * SeriesCoefficient[x^2*Exp[x^2], {x,0,n}]]
Out[21]//InputForm= n!*Piecewise[{{Gamma[n/2]^(-1), Mod[n, 2] == 0 && n >= 2}}, 0]
InputForm[mncoeff = m!*n! *
SeriesCoefficient[x/((-1+x)*(1-y)*(-1+x+x*y)), {x,0,m}, {y,0,n}]]
Out[22]//InputForm= m!*n!*Piecewise[{{-1 + Binomial[m, 1 + n]*Hypergeometric2F1[1, -1 - n, m - n, -1], m >= 1 && n > -1}}, 0]
Good luck extracting limits for m, n integer, in this second case.
Daniel Lichtblau Wolfram Research
No sure if this is what you want, but you may try:
D[x^2*Exp[x^2], {x, n}] /. n -> 4 /. x -> 0
Another way:
f[x0_, n_] := n! SeriesCoefficient[x^2*Exp[x^2], {x, x0, n}]
f[0,4]
24
And of course, in the same line, for your other question:
f[m_, n_] :=
Limit[Limit[
D[D[x/((-1 + x) (1 - y) (-1 + x + x y)), {x, m}], {y, n}], {x ->
0}], {y -> 0}]
These answers don't give you an explicit form for the derivatives, though.
精彩评论