I have this problem that I can't solve.. what is t开发者_如何学Pythonhe complexity of this foo algorithm?
int foo(char A[], int n, int m){
int i, a=0;
if (n>=m)
return 0;
for(i=n;i<m;i++)
a+=A[i]
return a + foo(A, n*2, m/2);
}
the foo function is called by:
foo(A,1,strlen(A));
so.. I guess it's log(n) * something for the internal for loop.. which I'm not sure if it's log(n) or what..
Could it be theta of log^2(n)?
This is a great application of the master theorem:
Rewrite in terms of n and X = m-n:
int foo(char A[], int n, int X){
int i, a=0;
if (X < 0) return 0;
for(i=0;i<X;i++)
a+=A[i+n]
return a + foo(A, n*2, (X-3n)/2);
}
So the complexity is
T(X, n) = X + T((X - 3n)/2, n*2)
Noting that the penalty increases with X and decreases with n,
T(X, n) < X + T(X/2, n)
So we can consider the complexity
U(X) = X + U(X/2)
and plug this into master theorem to find U(X) = O(X) --> complexity is O(m-n)
I'm not sure if there's a 'quick and dirty' way, but you can use old good math. No fancy theorems, just simple equations.
On k-th level of recursion (k
starts from zero), a loop will have ~ n/(2^k) - 2^k
iterations. Therefore, the total amount of loop iterations will be S = sum(n/2^i) - sum(2^i)
for 0 <= i <= l
, where l
is the depth of recursion.
The l
will be approximately log(2, n)/2
(prove it).
Transforming each part in formula for S
separately, we get.
S = (1 + 2 + .. + 2^l)*n/2^l - (2^(l + 1) - 1) ~= 2*n - 2^(l + 1) ~= 2*n - sqrt(n)
Since each other statement except loop will be repeated only l
times and we know that l ~= log(2, n)
, it won't affect complexity.
So, in the end we get O(n)
.
精彩评论