I have a 75 x 75
square matrix. All the values in it, other than labels are decimals.
I want to get all the pairs of labels having values above or below the cutoff I set.
Say, I have the following
A B C D
A 1 0.2 0.43 0.16
B 0.2 1 0.86 0.28
C 0.43 0.86 1 0.76
D 0.16 0.28 0.76 1
I want
B C 0.86
C D 0.76
A C 开发者_C百科 0.43
How can I go about it (without getting duplicates)?
Thanks
First you need to convert to a representation with one row for each value; one way to do this is by converting to a matrix and then to a data.frame. To avoid duplicates, set the lower triangle (possibly including the diagonal) to NA before converting to a data frame, and then take the subset of the data frame where the values aren't NAs.
mtx <- matrix( rnorm(16), 4, 4, dimnames = list( LETTERS[1:4], LETTERS[1:4]))
mtx[lower.tri(mtx, diag=TRUE)] <- NA
dx <- as.data.frame(as.table(mtx))
dx <- subset(dx, !is.na(Freq))
You can then take a subset as desired from the resulting data frame.
> subset(dx, Freq>0)
Var1 Var2 Freq
5 A B 1.9564158
9 A C 1.7188939
14 B D 0.1848542
One way is to use the melt
fn from the reshape
package (UPDATED to avoid duplication in symmetric matrices, and sorting the final result).
> mtx <- matrix( round(10*rnorm(16)),
4, 4, dimnames = list( LETTERS[1:4], LETTERS[1:4]))
> mtx[ upper.tri(mtx)] <- NA
> mtx
A B C D
A -7 NA NA NA
B 23 17 NA NA
C 6 -2 20 NA
D -23 8 15 -6
> require(reshape)
> df <- cbind( data.frame(Row = rownames(mtx)), as.data.frame(mtx))
> df.m <- melt(df, id = 'Row', variable_name = 'Col')
> df.m
Row Col value
1 A A -7
2 B A 23
3 C A 6
4 D A -23
5 A B NA
6 B B 17
7 C B -2
8 D B 8
9 A C NA
10 B C NA
11 C C 20
12 D C 15
13 A D NA
14 B D NA
15 C D NA
16 D D -6
> filt <- subset(df.m, value < 0)
> filt[order(filt$value),]
Row Col value
4 D A -23
1 A A -7
16 D D -6
7 C B -2
Of course you could then format the result any way you want, e.g.
> cat(with(filt, paste(Row, Col, value, '\n')))
A A -7
D A -23
C B -2
D D -6
library(fBasics)
Z <- Triang(X)
data.frame(t(apply(which(Z >= 0.43 & Z < 1 ,arr.ind = T),1,
function(y) c(rownames(Z)[y[1]],colnames(Z)[y[2]],Z[y[1],y[2]]))))
gives
X1 X2 X3
A A C 0.43
B B C 0.86
C C D 0.76
With the matrix and cut-off
m <- matrix( rnorm(16), 4, 4, dimnames = list( LETTERS[1:4], LETTERS[1:4]))
cut <- 0
index the values satisfying your criteria and use that to extract the desired values and row names. Sort after the fact
i <- lower.tri(m, diag=TRUE) * m > cut
df <- data.frame(Row=rownames(m)[row(m)[i]], Col=colnames(m)[col(m)[i]],
Val=m[i])
df[order(df$Val),]
精彩评论