Hi i found this code somewhere with little info with it. it's suppose to be a backpropagation neural network code. but it seem to be lacking of something like weight and bias. is the code correct? is it test-while-train backpropagation neural network? thanks
% --- Executes on button press in pushbutton6.
%~~~~~~~~~~~[L1 L2 1];first hidden layer,second & output layer~~~~~
layer = [11 15 1];
myepochs = 30;
attemption = 1; %i;
mytfn = {'tansig' 'tansig' 'purelin'};
%~~~~~~load data~~~~~~~~~~~~~~~~~~~~~~~
m = xlsread('D:\MATLAB\datatrain.csv');
%~~~~~~convert the data in Matrix form~~~~
[row,col] = size(m);
P = m(1:row,1:10)';
T1 = m(1:row, col)'; % target data for training...last column
net = newff([minmax(P)],layer,mytfn,'trainlm'); %nnet
net.trainParam.epochs = myepochs; % how many time newff will repeat the training
net.trainParam.showWindow = true;
net.trainParam.showCommandLine = true;
net = train(net,P,T1); % start training newff with input P and target T1
Y = sim(net,P); % training
save 'net7' net;
% --- Executes on button press in pushbutton4.
%~~~~~~load data~~~~~~~~~~~~~~~~~~~~~~~
mt = xlsread('D:\MATLAB\datatest.csv');
%~~~~~~convert the data in Matrix form~~~~
[row1,col1] = size(mt);
Pt= mt(1:row1,1:10)';
Tt = mt(1:row1, col1)';
load 'net7' -mat;
Yt= sim(net,Pt);
%~~~~~~~final result of the neural network~~~~~~~~
[r,c]=size(Yt);
result=Yt(c);
if result>0.7
error=1-result;
set(handles.edit39,'String','yes')
set(handles.edit40,'String',num2str(error))
set(handles.edit41,'String','Completed')
data1=[num2str(result) ];
fid = fopen('D:\MATLAB\record.csv','a+');
fprintf(fid,[data1,'\n']);
fclose(fid);
else
set(handles.edit39,'String','no')
set(handles.edit40,'String',num2st开发者_运维百科r(result))
set(handles.edit41,'String','Completed')
data1=[num2str(result) ];
fid = fopen('D:\MATLAB\record.csv','a+');
fprintf(fid,[data1,'\n']);
fclose(fid);
end
The code is correct. Neural network weights and biases are stored inside net
structure, you can access them via net.IW
and net.LW
structures. Biases are stored inside net.b
. This code train a network using inputs P
and targets T1
, splitting them in training, testing and validations subsets used during training. Check the documentation for further information about training procedure.
精彩评论