I have a list of lists of tuples
A= [ [(1,2,3),(4,5,6)], [(7,8,9),(8,7,6),(开发者_开发问答5,4,3)],[(2,1,0),(1,3,5)] ]
The outer list can have any number of inner lists, the inner lists can have any number of tuples, a tuple always has 3 integers.
I want to generate all combination of tuples, one from each list:
[(1,2,3),(7,8,9),(2,1,0)]
[(1,2,3),(7,8,9),(1,3,5)]
[(1,2,3),(8,7,6),(2,1,0)]
...
[(4,5,6),(5,4,3),(1,3,5)]
A simple way to do it is to use a function similar to itertools.poduct()
but it must be called like this
itertools.product([(1,2,3),(4,5,6)], [(7,8,9),(8,7,6),(5,4,3)],[(2,1,0),(1,3,5)])
i.e the outer list is removed. And I don't know how to do that. Is there a better way to generate all combinations of tuples?
itertools.product(*A)
For more details check the python tutorial
This works for your example, if there is only one level of nested lists (no lists of lists of lists):
itertools.product(*A)
you can probably call itertools.product like so:
itertools.product(*A) # where A is your list of lists of tuples
This way it expands your list's elements into arguments for the function you are calling.
Late to the party but ...
I'm new to python and come from a lisp background. This is what I came up with (check out the var names for lulz):
def flatten(lst):
if lst:
car,*cdr=lst
if isinstance(car,(list)):
if cdr: return flatten(car) + flatten(cdr)
return flatten(car)
if cdr: return [car] + flatten(cdr)
return [car]
Seems to work. Test:
A = [ [(1,2,3),(4,5,6)], [(7,8,9),(8,7,6),(5,4,3)],[(2,1,0),(1,3,5)] ]
flatten(A)
Result:
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (8, 7, 6), (5, 4, 3), (2, 1, 0), (1, 3, 5)]
Note: the line car,*cdr=lst
only works in Python 3.0
This is not exactly one step, but this would do what you want if for some reason you don't want to use the itertools solution:
def crossprod(listoflists):
if len(listoflists) == 1:
return listoflists
else:
result = []
remaining_product = prod(listoflists[1:])
for outertupe in listoflists[0]:
for innercombo in remaining_product[0]:
newcombo = [outertupe]
newcombo.append(innercombo)
result.append(newcombo)
return result
def flatten(A)
answer = []
for i in A:
if type(i) == list:
ans.extend(i)
else:
ans.append(i)
return ans
This may also be achieved using list comprehension.
In [62]: A = [ [(1,2,3),(4,5,6)], [(7,8,9),(8,7,6),(5,4,3)],[(2,1,0),(1,3,5)] ]
In [63]: improved_list = [num for elem in A for num in elem]
In [64]: improved_list
Out[64]: [(1, 2, 3), (4, 5, 6), (7, 8, 9), (8, 7, 6), (5, 4, 3), (2, 1, 0), (1, 3, 5)]
精彩评论