Given the following List:
val l = List(List(1, 2, 3), List(4, 5), List(6, 7, 8))
If I try to transpose it, Scala will throw the following error:
scala> List.transpose(l)
java.util.NoSuchElementException: head of empty list
at scala.Nil$.head(List.scala:1365)
at scala.Nil$.head(List.scala:1362)
at scala.List$$anonfun$transpose$1.apply(List.scala:417)
at scala.List$$anonfun$transpose$1.apply(List.scala:417)
at scala.List.map(List.scala:812)
at scala.List$.transpose(List.scala:417)
at .<init>(<console>:6)
at .<clinit>(<console>)
at RequestResult...
This is because List.transpose
assumes equal-length lists and so uses the head
method:
def transpose[A](xss: List[List[A]]): List[List[A]] = {
val buf = new ListBuffer[List[A]]
var yss = xss
while (!yss.head.isEmpty) {
buf += (yss map (_.head))
yss = (yss map (_.tail))
}
buf.toList
}
I would like to get the following:
List(List(1, 4, 6), List(2, 5, 7), List(3, 8))
Is writing my own version of transpose
the best way to do this? This is what I came up with:
def myTranspose[A](xss: List[List[A]]): List[List[A]] = {
val buf = new ListBuffer[List[A]]
var yss = xss
while (!yss.head.isEmpty) {
buf += (yss filter (!_.isEmpty) map (_.head))
yss = (yss filter (!_.isEmpty) map (_.tail))
}
buf.toList
}
Update: I was interested in comparing the speed of the different solutions offered here, so I put together the following little benchmark:
import scala.testing.Benchmark
import scala.collection.mutable.ListBuffer
trait Transpose extends Benchmark {
def transpose[Int](xss: List[List[Int]]): List[List[Int]] = Nil
val list: List[List[Int]] = List(List(1,2,3), Nil, List(4,5,99,100), List(6,7,8))
def run = {
val l = transpose(list)
println(l)
l
}
}
object PRTranspose extends Transpose {
override def transpose[Int](xss: List[List[Int]]): List[List[Int]] = {
val buf = new ListBuffer[List[Int]]
var yss = xss
while (!yss.head.isEmpty) {
buf += (yss filter (!_.isEmpty) map (_.head))
yss = (yss filter (!_.isEmpty) map (_.tail))
}
buf.toList
}
}
object ACTranspose extends Transpose {
override def transpose[Int](xss: List[List[Int]]): List[List[Int]] = {
val b = new ListBuffer[List[Int]]
var y = xss filter (!_.isEmpty)
while (!y.isEmpty) {
b += y map (_.head)
y = y map (_.tail) filter (!_.isEmpty)
}
b.toList
}
}
object ETranspose extends Transpose {
override def transpose[Int](xss: List[List[Int]]): List[List[Int]] = xss.filter(!_.isEmpty) match {
case Nil => Nil
case ys: List[List[Int]] => ys.map{ _.head }::transpose(ys.map{ _.tail })
}
}
My commands were:
scala PFTranspose 5 out.log
scala ACTranspose 5 out.log
scala ETranspose 5 out.log
My results were:
PRTranspose$ 10 0 开发者_JS百科 1 1 0
ACTranspose$ 9 2 0 0 0
ETranspose$ 9 3 2 3 1
How about this:
scala> def transpose[A](xs: List[List[A]]): List[List[A]] = xs.filter(_.nonEmpty) match {
| case Nil => Nil
| case ys: List[List[A]] => ys.map{ _.head }::transpose(ys.map{ _.tail })
| }
warning: there were unchecked warnings; re-run with -unchecked for details
transpose: [A](xs: List[List[A]])List[List[A]]
scala> val ls = List(List(1, 2, 3), List(4, 5), List(6, 7, 8))
ls: List[List[Int]] = List(List(1, 2, 3), List(4, 5), List(6, 7, 8))
scala> transpose(ls)
res0: List[List[Int]] = List(List(1, 4, 6), List(2, 5, 7), List(3, 8))
scala> val xs = List(List(1,2,3), List(4,5,99,100), List(6,7,8))
xs: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 99, 100), List(6, 7, 8))
scala> transpose(xs)
res1: List[List[Int]] = List(List(1, 4, 6), List(2, 5, 7), List(3, 99, 8), List(100))
I suspect the reason transpose is not defined on a "non-rectangular" list of lists is because mathematically the transpose operation is well-defined only on "rectangular structures". A desirable property of a transpose operation is that transpose( transpose(x) ) == x. This is not the case in your generalization of the transpose operation on non-rectangular list of lists.
Also, take a look at my post on Transposing arbitrary collection-of-collections in Scala and think about doing it for non-rectangular collections-of-collections. You will end up with mathematically inconsistent definitions, leave alone implementations.
I do agree that idiosyncratic "transpose" operations are often useful, but I also think that they should not be made available in standard libraries because of potential confusion regarding their precise definitions.
I don't know of (and can't imagine - isn't this is a bit odd?! [see discussion in comments]) a library function, but I can polish the code a little:
scala> def transpose(x: List[List[Int]]): List[List[Int]] = {
| val b = new ListBuffer[List[Int]]
| var y = x filter (!_.isEmpty)
| while (!y.isEmpty) {
| b += y map (_.head)
| y = y map (_.tail) filter (!_.isEmpty)
| }
| b.toList
| }
This is probably the cleanest:
def transpose[T](l: List[List[T]]): List[List[T]] =
l.flatMap(_.headOption) match {
case Nil => Nil
case head => head :: transpose(l.map(_.drop(1)))
}
or a modified version that is even more efficient:
def transpose[T](l: List[List[T]]): List[List[T]] =
l.flatMap(_.headOption) match {
case Nil => Nil
case head => head :: transpose(l.collect { case _ :: tail => tail })
}
How about this one-liner using the Scala's standard Api:
((l map (_.toArray)) toArray).transpose map (_.toList) toList
This gets the job done and is O(N*M)
, where N
is the length of the wrapper list and M
is the length of the longest list inside the wrapper list.
精彩评论