Hey, I'm currently trying to extract information from a 3d array, where each entry represents a coordinate in order to draw something out of it. The problem is that the array is ridiculously large (and there are several of them) meaning I can't actually draw all of it.
What I'm trying to accomplish then, is just to draw a representation of the outside coordinates, a shell of the array if you'd like. This array is not full, can have large empty spaces with only a few pixels set, or have large clusters of pixel data grouped together. I do not know what kind of shape to expect (could be a simple cube, or a complex concave mesh), and am struggling to come up with an algorithm to effectively extract the border. This array effectively stores a set of points in a 3d space.
I thought of creating 6 2d meshes (one for each side of the 3d array), and getting the shallowest point they can find for each position, and then drawing them separetly. As I said however, this 3d shape could be concave, which creates problems with this approach. Imagine a cone with a circle on top (said circle bigg开发者_运维技巧er than the cone's base). While the top and side meshes would get the correct depth info out of the shape, the bottom mesh would connect the base to the circle through vertical lines, making me effectivelly loose the conical shape.
Then I thought of annalysing the array slice by slice, and creating 2 meshes from the slice data. I believe this should work for any type of shape, however I'm struggling to find an algorithm which accuratly gives me the border info for each slice. Once again, if you just try to create height maps from the slices, you will run into problems if they have any concavities. I also throught of some sort of edge tracking algorithm, but the array does not provide continuous data, and there is almost certainly not a continuous edge along each slice.
I tried looking into volume rendering, as used in medical imaging and such, as it deals with similar problems to the one I have, but couldn't really find anything that I could use.
If anyone has any experience with this sort of problem, or any valuable input, could you please point me in the right direction.
P.S. I would prefer to get a closed representation of the shell, thus my earlier 2d mesh approach. However, an approach that simply gives me the shell points, without any connection between them, that would still be extremely helpful.
Thank you, Ze
I would start by reviewing your data structure. As you observed, the array does not maintain any obvious spatial relationships between points. An octree is a pretty good representation for data like you described. Depending upon the complexity of you point set, you may be able to find the crust using just the octree - assuming you have some connectivity between near points.
Alternatively, you may then turn to more rigorous algorithms like raycasting or marching cubes.
Guess, it's a bit late by now to be truly useful to you, but for reference I'd say this is a perfect scenario for volumetric modeling (as you guessed yourself). As long as you know the bounding box of your point cloud, you can map these coordinates to a voxel space and increase the density (value) of each voxel for each data point. Once you have your volume fully defined, you can then use the Marching cubes algorithm to produce a 3D surface mesh for a given threshold value (iso value). That resulting surface doesn't need to be continuous, but will wrap all voxels with values > isovalue inside. The 2D equivalent are heatmaps... You can refine the surface quality by adjusting the iso threshold (higher means tighter) and voxel resolution.
Since you're using Java, you might like to take a look at my toxiclibs volumeutils library, which also comes with sevaral examples (for Processing) showing the general approach...
Imagine a cone with a circle on top (said circle bigger than the cone's base). While the top and side meshes would get the correct depth info out of the shape, the bottom mesh would connect the base to the circle through vertical lines, making me effectivelly loose the conical shape.
Even an example as simple as this would be impossible to reconstruct manually, let alone algorithmically. The possibility of your data representing a cylinder with a cone shaped hole is as likely as the vertices representing a cone with a disk attached to the top.
I do not know what kind of shape to expect (could be a simple cube...
Again, without further information on how the data was generated, 8 vertices arranged in the form of a cube might as well represent 2 crossed squares. If you knew that the data was generated by, for example, a rotating 3d scanner of some sort then that would at least be a start.
精彩评论