I have an array of four unsigned chars. I want to treat it like a 32-bit number (assume the upper bits of the char are don't care. I only care about the lower 8-bits). Then, I want to circularly shift it by an arbitrary number of places. I've got a few different shift sizes, all determined at compile-time.
E.g.
unsigned char a[4] = {0x81, 0x1, 0x1, 0x2};
circular_left_shift(a, 1);
/* a is now { 0x2, 0x2, 0x2, 0x5 } */
Edit: To everyone wondering why I didn't mention CHAR_BIT != 8, because this is standard C. I didn't specify a platform, so why are you assum开发者_如何转开发ing one?
static void rotate_left(uint8_t *d, uint8_t *s, uint8_t bits)
{
const uint8_t octetshifts = bits / 8;
const uint8_t bitshift = bits % 8;
const uint8_t bitsleft = (8 - bitshift);
const uint8_t lm = (1 << bitshift) - 1;
const uint8_t um = ~lm;
int i;
for (i = 0; i < 4; i++)
{
d[(i + 4 - octetshifts) % 4] =
((s[i] << bitshift) & um) |
((s[(i + 1) % 4] >> bitsleft) & lm);
}
}
Obviously
While keeping in mind plain C the best way is
inline void circular_left_shift(char *chars, short shift) {
__int32 *dword = (__int32 *)chars;
*dword = (*dword << shift) | (*dword >> (32 - shift));
}
Uhmm, char
is 16 bits long, was not clear for me. I presume int
is still 32 bit.
inline void circular_left_shift(char *chars, short shift) {
int i, part;
part = chars[0] >> (16 - shift);
for (i = 0; i < 3; ++i)
chars[i] = (chars[i] << shift) | (chars[i + 1] >> (16 - shift));
chars[3] = (chars[3] << shift) | part;
}
Or you could just unwind this cycle.
You could dig further into asm instruction ror
, on x86 it's capable of performing such shift up to 31 bits left. Something like a
MOV CL, 31
ROR EAX, CL
Use union
:
typedef union chr_int{
unsigned int i;
unsigned char c[4];
};
It's safer (because of pointer aliasing) and easier to manipulate.
EDIT: you should have mention earlier that your char isn't 8 bits. However, this should do the trick:
#define ORIG_MASK 0x81010102
#define LS_CNT 1
unsigned char a[4] = {
((ORIG_MASK << LS_CNT ) | (ORIG_MASK >> (32 - LS_CNT))) & 0xff,
((ORIG_MASK << (LS_CNT + 8)) | (ORIG_MASK >> (24 - LS_CNT))) & 0xff,
((ORIG_MASK << LS_CNT + 16)) | (ORIG_MASK >> (16 - LS_CNT))) & 0xff,
((ORIG_MASK << (LS_CNT + 24)) | (ORIG_MASK >> ( 8 - LS_CNT))) & 0xff
};
精彩评论