So, I'm developing some software, and trying to keep myself using TDD and other best practices.
I'm trying to write tests to define the classes and repository.
Let's say I have the classes, Customer
, Order
, OrderLine
.
Now, do I create the Order
class as something like
abstract class Entity {
int ID { get; set; }
}
class Order : Entity {
Customer Customer { get; set; }
List<OrderLine> OrderLines { get; set; }
}
Which will serialize nice, but, if I don't care about the OrderLines
, or Customer
details is not as lightweight as one would like. Or do I just store IDs to items and add a function for getting them?
class Order : Entity {
int CustomerID { get; set; }
List<OrderLine> GetOrderLines() {};
}
class OrderLine : Entity {
int OrderID { get; set; }
}
And how would you structure the repository for something like this?
Do I use an abstract CRUD repository with methods GetByID(int)
, Save(entity)
, Delete(entity)
that each items repository inherits from, and adds it's own specific methods too, something like this?
public abstract class RepositoryBase<T, TID> : IRepository<T, TID> where T : AEntity<TID>
{
private static List<T> Entities { get; set; }
public RepositoryBase()
{
Entities = new List<T>();
}
public T GetByID(TID id)
{
return Entities.Where(x => x.Id.Equals(id)).SingleOrDefault();
}
public T Save(T entity)
{
Entities.RemoveAll(x => x.Id.Equals(entity.Id));
Entities.Add(entity);
return entity;
}
public T Delete(T entity)
{
Entities.RemoveAll(x => x.Id.Equals(entity.Id));
return entity;
}开发者_如何学运维
}
What's the 'best practice' here?
Entities
Let's start with the Order
entity. An order is an autonomous object, which isn't dependent on a 'parent' object. In domain-driven design this is called an aggregate root; it is the root of the entire order aggregate. The order aggregate consists of the root and several child entities, which are the OrderLine
entities in this case.
The aggregate root is responsible for managing the entire aggregate, including the lifetime of the child entities. Other components are not allowed to access the child entities; all changes to the aggregate must go through the root. Also, if the root ceases to exist, so do the children, i.e. order lines cannot exist without a parent order.
The Customer
is also an aggregate root. It isn't part of an order, it's only related to an order. If an order ceases to exist, the customer doesn't. And the other way around, if a customer ceases to exist, you'll want to keep the orders for bookkeeping purposes. Because Customer
is only related, you'll want to have just the CustomerId
in the order.
class Order
{
int OrderId { get; }
int CustomerId { get; set; }
IEnumerable<OrderLine> OrderLines { get; private set; }
}
Repositories
The OrderRepository
is responsible for loading the entire Order
aggregate, or parts of it, depending on the requirements. It is not responsible for loading the customer. If you need the customer, load it from the CustomerRepository
, using the CustomerId
from the order.
class OrderRepository
{
Order GetById(int orderId)
{
// implementation details
}
Order GetById(int orderId, OrderLoadOptions loadOptions)
{
// implementation details
}
}
enum OrderLoadOptions
{
All,
ExcludeOrderLines,
// other options
}
If you ever need to load the order lines afterwards, you should use the tell, don't ask principle. Tell the order to load its order lines, and which repository to use. The order will then tell the repository the information it needs to know.
class Order
{
int OrderId { get; }
int CustomerId { get; set; }
IEnumerable<OrderLine> OrderLines { get; private set; }
void LoadOrderLines(IOrderRepository orderRepository)
{
// simplified implementation
this.OrderLines = orderRepository.GetOrderLines(this.OrderId);
}
}
Note that the code uses an IOrderRepository
to retrieve the order lines, rather than a separate repository for order lines. Domain-driven design states that there should be a repository for each aggregate root. Methods for retrieving child entities belong in the repository of the root and should only be accessed by the root.
Abstract/base repositories
I have written abstract repositories with CRUD operations myself, but I found that it didn't add any value. Abstraction is useful when you want to pass instances of subclasses around in your code. But what kind of code will accept any BaseRepository
implementation as a parameter?
Also, the CRUD operations can differ per entity, making a base implementation useless. Do you really want to delete an order, or just set its status to deleted? If you delete a customer, what will happen to the related orders?
My advice is to keep things simple. Stay away from abstraction and generic base classes. Sure, all repositories share some kind of functionality and generics look cool. But do you actually need it?
I would divide my project up into the relevant parts. Data Transfer Objects (DTO), Data Access Objects (DAO). The DTO's I would want to be as simple as possible, terms like POJO (Plain Old Java Object) and POCO (Plain Old C Object) are used here, simply put they are container objects with very little if any functionality built into them.
The DTO's are basically the building blocks to the whole application, and will marry up the layers. For every object that is modeled in the system, there should be at least one DTO. How you then put these into collections is entirely up to the design of the application. Obviously there are natural One to many relationships floating around, such as Customer has many Orders. But the fundamentals of these objects are what they are. For example, an order has a relationship with a customer, but can also be stand alone and so needs to be separate from the customer object. All Many to Many Relationships should be resolved down into One to Many relationships which is easy when dealing with nested classes.
Presumably there should be CRUD objects that appear within the Data Access Objects category. This is where it gets tricky as you have to manage all the relationships that have been discovered in design and the lifetime models of each. When fetching DTO's back from the DAO the loading options are essential as this can mean the difference between your system running like a dog from over eager loading, or high network traffic from fetching data back and fourth from your application and the store by lazy loading.
I won't go into flags and loading options as others here have done all that.
class OrderDAO
{
public OrderDTO Create(IOrderDTO order)
{
//Code here that will create the actual order and store it, updating the
flelds in the OrderDTO where necessary. One being the GUID field of the new ID.
I stress guid as this means for better scalability.
return OrderDTO
}
}
As you can see the OrderDTO is passed into the Create Method.
For the Create Method, when dealing with brand new nested Objects, there will have to be some code dealing with the marrying up of data that has been stored, for example a customer with old orders, and a new order. The system will have to deal with the fact that some of the operations are update statements, whilst others are Create.
However one piece of the puzzle that is always missed is that of multi-user environments where DTO's (plain Objects) are disconnected from the application and returned back to the DAO for CRUD. This usually involves some Concurrency Control which can be nasty and can get complicated. A simple mechanism such as DateTime or Version number works here, although when doing crud on a nested object, you must develop the rules on what gets updated and in what order, also if an update fails concurrency, you have to decide on whether you fail all the operation or partial.
Why not create separate Order classes? It sounds to me like you're describing a base Order object, which would contain the basic order and customer information (or maybe not even the customer information), and a separate Order object that has line items in it.
In the past, I've done as Niels suggested, and either used boolean flags or enums to describe optionally loading child objects, lists, etc. In Clean Code, Uncle Bob says that these variables and function parameters are excuses that programmers use to not refactor a class or function into smaller, easier to digest pieces.
As for your class design, I'd say that it depends. I assume that an Order could exist without any OrderLines, but could not exist without a Customer (or at least a way to reference the customer, like Niels suggested). If this is the case, why not create a base Order class and a second FullOrder class. Only FullOrder would contain the list of OrderLines. Following that thought, I'd create separate repositories to handle CRUD operations for Order and FullOrder.
If you are interested in domain driven design (DDD) implementation with POCOs along with explanations take a look at the following 2 posts:
http://devtalk.dk/2009/06/09/Entity+Framework+40+Beta+1+POCO+ObjectSet+Repository+And+UnitOfWork.aspx
http://www.primaryobjects.com/CMS/Article122.aspx
There is also a project that implements domain driven patterns (repository, unit of work, etc, etc) for various persistence frameworks (NHibernate, Entity Frameworks, etc, etc) called NCommon
精彩评论