I need to convert strings with valid Python syntax such as:
'1+2**(x+y)'
and get the equivalent LaTeX:
$1+2^{x+y}$
开发者_开发技巧I have tried SymPy's latex
function but it processes actual expression, rather than the string form of it:
>>> latex(1+2**(x+y))
'$1 + 2^{x + y}$'
>>> latex('1+2**(x+y)')
'$1+2**(x+y)$'
but to even do this, it requires x
and y
to be declared as type "symbols".
I want something more straightforward, preferably doable with the parser from the compiler module.
>>> compiler.parse('1+2**(x+y)')
Module(None, Stmt([Discard(Add((Const(1), Power((Const(2), Add((Name('x'), Name('y'))))))))]))
Last but not least, the why: I need to generate those LaTeX snippets so that I can show them in a webpage with MathJax.
Here's a rather long but still incomplete method that doesn't involve sympy in any way. It's enough to cover the example of (-b-sqrt(b**2-4*a*c))/(2*a)
which gets translated to \frac{- b - \sqrt{b^{2} - 4 \; a \; c}}{2 \; a}
and renders as
It basically creates the AST and walks it producing the latex math the corresponds to the AST nodes. What's there should give enough of an idea how to extend it in the places it's lacking.
import ast
class LatexVisitor(ast.NodeVisitor):
def prec(self, n):
return getattr(self, 'prec_'+n.__class__.__name__, getattr(self, 'generic_prec'))(n)
def visit_Call(self, n):
func = self.visit(n.func)
args = ', '.join(map(self.visit, n.args))
if func == 'sqrt':
return '\sqrt{%s}' % args
else:
return r'\operatorname{%s}\left(%s\right)' % (func, args)
def prec_Call(self, n):
return 1000
def visit_Name(self, n):
return n.id
def prec_Name(self, n):
return 1000
def visit_UnaryOp(self, n):
if self.prec(n.op) > self.prec(n.operand):
return r'%s \left(%s\right)' % (self.visit(n.op), self.visit(n.operand))
else:
return r'%s %s' % (self.visit(n.op), self.visit(n.operand))
def prec_UnaryOp(self, n):
return self.prec(n.op)
def visit_BinOp(self, n):
if self.prec(n.op) > self.prec(n.left):
left = r'\left(%s\right)' % self.visit(n.left)
else:
left = self.visit(n.left)
if self.prec(n.op) > self.prec(n.right):
right = r'\left(%s\right)' % self.visit(n.right)
else:
right = self.visit(n.right)
if isinstance(n.op, ast.Div):
return r'\frac{%s}{%s}' % (self.visit(n.left), self.visit(n.right))
elif isinstance(n.op, ast.FloorDiv):
return r'\left\lfloor\frac{%s}{%s}\right\rfloor' % (self.visit(n.left), self.visit(n.right))
elif isinstance(n.op, ast.Pow):
return r'%s^{%s}' % (left, self.visit(n.right))
else:
return r'%s %s %s' % (left, self.visit(n.op), right)
def prec_BinOp(self, n):
return self.prec(n.op)
def visit_Sub(self, n):
return '-'
def prec_Sub(self, n):
return 300
def visit_Add(self, n):
return '+'
def prec_Add(self, n):
return 300
def visit_Mult(self, n):
return '\\;'
def prec_Mult(self, n):
return 400
def visit_Mod(self, n):
return '\\bmod'
def prec_Mod(self, n):
return 500
def prec_Pow(self, n):
return 700
def prec_Div(self, n):
return 400
def prec_FloorDiv(self, n):
return 400
def visit_LShift(self, n):
return '\\operatorname{shiftLeft}'
def visit_RShift(self, n):
return '\\operatorname{shiftRight}'
def visit_BitOr(self, n):
return '\\operatorname{or}'
def visit_BitXor(self, n):
return '\\operatorname{xor}'
def visit_BitAnd(self, n):
return '\\operatorname{and}'
def visit_Invert(self, n):
return '\\operatorname{invert}'
def prec_Invert(self, n):
return 800
def visit_Not(self, n):
return '\\neg'
def prec_Not(self, n):
return 800
def visit_UAdd(self, n):
return '+'
def prec_UAdd(self, n):
return 800
def visit_USub(self, n):
return '-'
def prec_USub(self, n):
return 800
def visit_Num(self, n):
return str(n.n)
def prec_Num(self, n):
return 1000
def generic_visit(self, n):
if isinstance(n, ast.AST):
return r'' % (n.__class__.__name__, ', '.join(map(self.visit, [getattr(n, f) for f in n._fields])))
else:
return str(n)
def generic_prec(self, n):
return 0
def py2tex(expr):
pt = ast.parse(expr)
return LatexVisitor().visit(pt.body[0].value)
You can use sympy.latex
with eval
:
s = "1+2**(x+y)"
sympy.latex(eval(s)) # prints '$1 + {2}^{x + y}$'
You still have to declare the variables as symbols, but if this is really a problem, it's much easier to write a parser to do this than to parse everything and generate the latex from scratch.
You can use SymPy. Just pass the string to the sympify()
function first, which will convert it to a valid SymPy expression (i.e., create the Symbols for you, etc.). So you could do
>>> latex(sympify('1+2**(x+y)'))
1 + 2^{x + y}
S()
is also a shortcut to sympify()
, i.e., latex(S('1+2**(x+y)'))
also works.
To build on tom10's answer you can define a dictionary that will generate symbols and use that when calling eval:
from collections import defaultdict
class GenerateSymbols(defaultdict):
def __missing__(self, key):
return sympy.Symbol(key)
Then if you use
sympy.latex(eval('1+2**(x+y)',GenerateSymbols()))
you shouldn't have to worry about pre-creating Symbols for the variables.
Just a little fix to Geoff Reedy excellent answer:
class GenerateSymbols(defaultdict):
def __missing__(self, key):
self[key] = sympy.Symbol(key)
return self[key]
Before it would not add the new item to the dict. Now you can use this with your expression:
d= GenerateSymbols()
eq = '(-b-sqrt(b**2-4*a*c))/(2*a)'
and you can further simplify it before converting it to LaTeX:
sympy.latex(sympy.simplify(eval(eq,d)))
and you get this:
'$- \\frac{b + \\operatorname{sqrt}\\left(- 4 a c + b^{2}\\right)}{2 a}$'
To render @Geoff Reedy latex format text. We could use matplotlib.
exp = py2tex('1**x+y')
import matplotlib.pyplot as plt
text = exp
plt.text(0.36, 0.5, r"$%s$" %text, fontsize=24)
ax = plt.gca()
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.show()
精彩评论