I've been working for some time with image formats and i know that an image is an array of pixels (24- maybe 32 bits long). The question is: what is the way a sound file is represented? To be honest i'm not even sure what i should be googling for. Also i would be interested how do you use the data, i mean actually playing the sounds in the file. For an image file you have all sorts of abstract devices to draw an image on(Graphics:java,c#, H开发者_如何学JAVADC:cpp(win32), etc.) .I hope i have been clear enough.
Here's a dandy overview of how .wav is stored. I found it by typing "wave file format" into google.
http://www.sonicspot.com/guide/wavefiles.html
WAV files can also store compressed audio, but I believe most of the time they are not compressed. But the WAV format is designed as a container for a number of options on how that audio is stored.
Here's a snipped of code that I found at another question here at stackoverflow that I like in C# that builds a WAV-formatted audio MemoryStream
and then plays that stream (without saving it to a file, like many other answers rely on). But saving it to a file can easily be added with one line of code if you want it saved to disk, but I would think that most of the time, that'd be undesirable.
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Windows.Forms;
public static void PlayBeep(UInt16 frequency, int msDuration, UInt16 volume = 16383)
{
var mStrm = new MemoryStream();
BinaryWriter writer = new BinaryWriter(mStrm);
const double TAU = 2 * Math.PI;
int formatChunkSize = 16;
int headerSize = 8;
short formatType = 1;
short tracks = 1;
int samplesPerSecond = 44100;
short bitsPerSample = 16;
short frameSize = (short)(tracks * ((bitsPerSample + 7) / 8));
int bytesPerSecond = samplesPerSecond * frameSize;
int waveSize = 4;
int samples = (int)((decimal)samplesPerSecond * msDuration / 1000);
int dataChunkSize = samples * frameSize;
int fileSize = waveSize + headerSize + formatChunkSize + headerSize + dataChunkSize;
// var encoding = new System.Text.UTF8Encoding();
writer.Write(0x46464952); // = encoding.GetBytes("RIFF")
writer.Write(fileSize);
writer.Write(0x45564157); // = encoding.GetBytes("WAVE")
writer.Write(0x20746D66); // = encoding.GetBytes("fmt ")
writer.Write(formatChunkSize);
writer.Write(formatType);
writer.Write(tracks);
writer.Write(samplesPerSecond);
writer.Write(bytesPerSecond);
writer.Write(frameSize);
writer.Write(bitsPerSample);
writer.Write(0x61746164); // = encoding.GetBytes("data")
writer.Write(dataChunkSize);
{
double theta = frequency * TAU / (double)samplesPerSecond;
// 'volume' is UInt16 with range 0 thru Uint16.MaxValue ( = 65 535)
// we need 'amp' to have the range of 0 thru Int16.MaxValue ( = 32 767)
// so we simply set amp = volume / 2
double amp = volume >> 1; // Shifting right by 1 divides by 2
for (int step = 0; step < samples; step++)
{
short s = (short)(amp * Math.Sin(theta * (double)step));
writer.Write(s);
}
}
mStrm.Seek(0, SeekOrigin.Begin);
new System.Media.SoundPlayer(mStrm).Play();
writer.Close();
mStrm.Close();
} // public static void PlayBeep(UInt16 frequency, int msDuration, UInt16 volume = 16383)
But this code shows a bit of insight into the WAV-format, and it is even code that allows a person to build your own WAV-format in C# source code.
精彩评论