Interesting usecase today: I need to migrate a module in our codebase following code changes. The old mynamespace.Document
will disappear and I want to ensure smooth migration by replacing this package by a code object that will dynamically import the correct path and migrate the corresponding objects.
In short:
# instanciate a dynamic package, but do not load
# statically submodules
mynamespace.Document = SomeObject()
assert 'submodule' not in mynamespace.Document.__dict__
# and later on, when importing it, the submodule
# is built if not already available in __dict__
from namespace.Document.submodule import klass
c = klass()
A few things to note:
- I am not talking only of migrating code. A simple huge
sed
would in a sense be enough to change the code in order to migrate some imports, and I would not need a dynamic module. I am talking of objects. A website, holding some live/stored objects will need migration. Those objects will be loaded assuming thatmynamespace.Document.submodule.klass
exists, and that's the reason for the dynamic module. I need to provide the site with something to load. - We cannot, or do not want to change the way objects are unpickled/loaded. For simplicity, let's just say that we want to make sure that the idiom
from mynamespace.Document.submodule import klass
has to work. I cannot use insteadfrom mynamespace import Document as container; klass = getattr(getattr(container, 'submodule'), 'klass')
What I tried:
import sys
from types import ModuleType
class VerboseModule(ModuleType):
def __init__(self, name, doc=None):
super(VerboseModule, self).__init__(name, 开发者_如何学编程doc)
sys.modules[name] = self
def __repr__(self):
return "<%s %s>" % (self.__class__.__name__, self.__name__)
def __getattribute__(self, name):
if name not in ('__name__', '__repr__', '__class__'):
print "fetching attribute %s for %s" % (name, self)
return super(VerboseModule, self).__getattribute__(name)
class DynamicModule(VerboseModule):
"""
This module generates a dummy class when asked for a component
"""
def __getattr__(self, name):
class Dummy(object):
pass
Dummy.__name__ = name
Dummy.__module__ = self
setattr(self, name, Dummy)
return Dummy
class DynamicPackage(VerboseModule):
"""
This package should generate dummy modules
"""
def __getattr__(self, name):
mod = DynamicModule("%s.%s" % (self.__name__, name))
setattr(self, name, mod)
return mod
DynamicModule("foobar")
# (the import prints:)
# fetching attribute __path__ for <DynamicModule foobar>
# fetching attribute DynamicModuleWorks for <DynamicModule foobar>
# fetching attribute DynamicModuleWorks for <DynamicModule foobar>
from foobar import DynamicModuleWorks
print DynamicModuleWorks
DynamicPackage('document')
# fetching attribute __path__ for <DynamicPackage document>
from document.submodule import ButDynamicPackageDoesNotWork
# Traceback (most recent call last):
# File "dynamicmodule.py", line 40, in <module>
# from document.submodule import ButDynamicPackageDoesNotWork
#ImportError: No module named submodule
As you can see the Dynamic Package does not work. I do not understand what is happening because document
is not even asked for a ButDynamicPackageDoesNotWork
attribute.
Can anyone clarify what is happening; and if/how I can fix this?
The problem is that python will bypass the entry in for document
in sys.modules
and load the file for submodule
directly. Of course this doesn't exist.
demonstration:
>>> import multiprocessing
>>> multiprocessing.heap = None
>>> import multiprocessing.heap
>>> multiprocessing.heap
<module 'multiprocessing.heap' from '/usr/lib/python2.6/multiprocessing/heap.pyc'>
We would expect that heap
is still None
because python can just pull it out of sys.modules
but That doesn't happen. The dotted notation essentially maps directly to {something on python path}/document/submodule.py
and an attempt is made to load that directly.
Update
The trick is to override pythons importing system. The following code requires your DynamicModule
class.
import sys
class DynamicImporter(object):
"""this class works as both a finder and a loader."""
def __init__(self, lazy_packages):
self.packages = lazy_packages
def load_module(self, fullname):
"""this makes the class a loader. It is given name of a module and expected
to return the module object"""
print "loading {0}".format(fullname)
components = fullname.split('.')
components = ['.'.join(components[:i+1])
for i in range(len(components))]
for component in components:
if component not in sys.modules:
DynamicModule(component)
print "{0} created".format(component)
return sys.modules[fullname]
def find_module(self, fullname, path=None):
"""This makes the class a finder. It is given the name of a module as well as
the package that contains it (if applicable). It is expected to return a
loader for that module if it knows of one or None in which case other methods
will be tried"""
if fullname.split('.')[0] in self.packages:
print "found {0}".format(fullname)
return self
else:
return None
# This is a list of finder objects which is empty by defaule
# It is tried before anything else when a request to import a module is encountered.
sys.meta_path=[DynamicImporter('foo')]
from foo.bar import ThisShouldWork
精彩评论