As a personal exercise, I want to implement the visitor pattern using shared_ptr. I am familiar with Robert Martin's acyclic visitor paper but find the intrusive nature of the virtual accept() and necessary creation of an {X}Visitor class for each {X} class unpleasant. I like the boost::static_visitor class as it encapsulates all the logic locally without the necessity of {X}::accept() and {X}Visitor.
What I am looking for is a hint (as I said, I'm doing this as an exercise) of how to create the template function function rip I mention below. I think it should be of the form:
template <typename U, typename T1, typename T2, ...>
boost::variant<T1, T2, ...> rip(U& p, boost::static_visitor<T1, T2, ...> sv)
{
if (T1 t1 = dynamic_cast<T1>(p)) return boost::variant<T1, ...>(t1)开发者_StackOverflow;
... and so on, splitting static_visitor
return 0; // or throw an exception
}
Any hints or pointers to tutorials doing similar things would be appreciated. Thanks.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <boost/bind.hpp>
#include <boost/variant.hpp>
struct Base {};
struct A : Base {};
struct B : Base {};
struct C : Base {};
typedef std::shared_ptr<Base> base_ptr;
typedef boost::variant<A*,B*,C*> base_variant;
struct variant_visitor : public boost::static_visitor<void> {
void operator()(A*, base_ptr) const {std::cout << "A*\n";}
void operator()(B*, base_ptr) const {std::cout << "B*\n";}
void operator()(C*, base_ptr) const {std::cout << "C*\n";}
};
int main(int, char**)
{
// This works, of course.
base_ptr b(new A());
base_variant v(new A());
boost::apply_visitor(boost::bind(variant_visitor(), _1, b), v);
// How could we use a shared_ptr with a variant? I almost see
// the template magic, a function to iterate over the template
// types from the variant_visitor and return an "any<...>".
// base_variant rip(base_ptr&, variant_visitor) {...}
// boost::apply_visitor(boost::bind(variant_visitor(), _1, b), rip(b, variant_visitor()));
return EXIT_SUCCESS;
}
I may be misunderstanding the question, but if you want to use the same variant_visitor
for a variant containing shared pointers instead of plain pointers, perhaps this can be achieved with another visitor that obtains the pointer from the shared_ptr
and passes it on to the other visitor.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#include <boost/variant.hpp>
struct Base {};
struct A : Base {};
struct B : Base {};
struct C : Base {};
typedef boost::shared_ptr<Base> base_ptr;
typedef boost::variant<boost::shared_ptr<A>,boost::shared_ptr<B>,boost::shared_ptr<C> > base_variant;
template <class Visitor>
struct visit_shared_ptr_get: public boost::static_visitor<typename Visitor::result_type>
{
//for unary visitors
template <class FirstArg>
typename Visitor::result_type operator()(FirstArg& first) const
{
return Visitor()(first.get());
}
//for binary visitors, only the first argument is "ripped"
template <class FirstArg, class SecondArg>
typename Visitor::result_type operator()(FirstArg& first, SecondArg& second) const
{
return Visitor()(first.get(), second);
}
};
struct variant_visitor : public boost::static_visitor<void> {
void operator()(A*, base_ptr) const {std::cout << "A*\n";}
void operator()(B*, base_ptr) const {std::cout << "B*\n";}
void operator()(C*, base_ptr) const {std::cout << "C*\n";}
};
int main(int, char**)
{
// This works, of course.
base_ptr b(new A());
base_variant v(boost::shared_ptr<A>(new A()));
boost::apply_visitor(boost::bind(visit_shared_ptr_get<variant_visitor>(), _1, b), v);
return EXIT_SUCCESS;
}
Edit: a downcaster that you seem to be envisioning.
#include <stdexcept>
#include <boost/type_traits.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/variant.hpp>
#include <boost/variant/variant_fwd.hpp>
#include <boost/preprocessor/repetition.hpp>
//dynamic_cast will only compile if the target type is a pointer
template <class Derived, class Base, class Variant>
typename boost::enable_if<boost::is_pointer<Derived>, bool>::type cast_if_pointer( Base* b, Variant& variant)
{
if (Derived p = dynamic_cast<Derived>(b)) { variant = p; return true; }
return false;
}
//weeds out boost's unused template parameters and other non-pointers
template <class Derived, class Base, class Variant>
typename boost::disable_if<boost::is_pointer<Derived>, bool>::type cast_if_pointer( Base*, Variant& )
{
return false;
}
template <class P, BOOST_VARIANT_ENUM_PARAMS(class T)>
void rip(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>& variant, const boost::shared_ptr<P>& smart_ptr)
{
#define ATTEMPT_CAST(z, n, type) if (cast_if_pointer<T ## n >(smart_ptr.get(), variant)) return;
BOOST_PP_REPEAT(BOOST_VARIANT_LIMIT_TYPES, ATTEMPT_CAST, T)
#undef ATTEMPT_CAST
throw std::bad_cast();
}
struct Base
{
virtual ~Base() {}
};
struct A : Base {};
struct B : Base {};
struct C : Base {};
typedef boost::shared_ptr<Base> base_ptr;
typedef boost::variant<A*,B*,C*> base_variant;
int main(int, char**)
{
base_ptr b(new A());
base_variant v;
rip(v, b);
return EXIT_SUCCESS;
}
You can't use the visitor for type deduction, because it has only one template argument - for the result_type
. Its operator()
either can or cannot be invoked on all the types any arbitrary boost::variant
might be storing.
I'm only guessing the following might be what you are looking for (my first use of boost's preprocessor library):
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <boost/bind.hpp>
#include <boost/variant.hpp>
#include <boost/variant/variant_fwd.hpp>
#include <boost/preprocessor/repetition.hpp>
#define SHARED_PTR_TO_PTR(z, n, text) BOOST_PP_COMMA_IF(n) typename shared_ptr_to_ptr<text ## n>::type
template <class T>
struct shared_ptr_to_ptr { typedef T type; };
template <class T>
struct shared_ptr_to_ptr<std::shared_ptr<T> > {typedef T* type; };
template <class T>
struct unsmartify_variant;
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct unsmartify_variant<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T) > >
{
typedef boost::variant<BOOST_PP_REPEAT(BOOST_VARIANT_LIMIT_TYPES, SHARED_PTR_TO_PTR, T)> type;
};
template <class Variant>
struct get_visitor: boost::static_visitor<typename unsmartify_variant<Variant>::type >
{
template <class SharedPtr>
typename unsmartify_variant<Variant>::type operator()(SharedPtr& p) const
{
return p.get();
}
};
template <class Variant>
typename unsmartify_variant<Variant>::type rip(Variant& variant)
{
return boost::apply_visitor(get_visitor<Variant>(), variant);
}
struct Base {};
struct A : Base {};
struct B : Base {};
struct C : Base {};
typedef std::shared_ptr<Base> base_ptr;
typedef boost::variant<std::shared_ptr<A>,std::shared_ptr<B>,std::shared_ptr<C> > base_variant;
struct variant_visitor : public boost::static_visitor<void> {
void operator()(A*, base_ptr) const {std::cout << "A*\n";}
void operator()(B*, base_ptr) const {std::cout << "B*\n";}
void operator()(C*, base_ptr) const {std::cout << "C*\n";}
};
int main(int, char**)
{
// This works, of course.
base_ptr b(new A());
base_variant v(std::shared_ptr<A>(new A()));
unsmartify_variant<base_variant>::type k = rip(v);
boost::apply_visitor(boost::bind(variant_visitor(), _1, b), k);
return EXIT_SUCCESS;
}
The greatest problem is that boost::variant
takes a fixed number of arguments.
Also it appears that the variant
is passed to apply_visitor
by non-const reference, meaning the result of rip
must be stored in a named variable.
精彩评论