This is my input data:
[[:a 1 2] [:a 3 4] [:a 5 6] [:b \a \b] [:b \c \d] [:b \e \f]]
I would like to map this into the following:
{:a [[1 2] [3 4] [5 6]] :b [[\a \b] [\c \d] [\e \f]]}
This is what I have so far:
(defn- build-annotation-map [annotation & m]
(let [gff (first annotation)
remaining (rest annotation)
seqname (first gff)
current {seqname [(nth gff 3) (nth gff 4)]}]
(if (not (seq remaining))
m
(let [new-m (merge-maps current m)]
(apply build-annotation-map remaining new-m)))))
(defn- merge-maps [m & ms]
(apply merge-with conj
(when (first ms)
(reduce conj ;this is to avoid [1 2 [3 4 ... etc.
(map (fn [k] {k []}) (keys m))))
m ms))
The above produces:
{:a [[1 2] [[3 4] [5 6]]] :b [[\a \b] [[\c \d] [\e \f]]]}
It seems clear to me that the problem is in merge-maps
, specifically with the function passed to merge-with
(conj
), but after banging my head for a while now, I'm about ready for someone to help me out.
I'm new to lisp in general, and clojure in particular, so I also appreciate comments not specifically addressing the problem, but also style, brain-dead constructs on my part, etc. Thanks!
开发者_运维百科Solution (close enough, anyway):
(group-by first [[:a 1 2] [:a 3 4] [:a 5 6] [:b \a \b] [:b \c \d] [:b \e \f]])
=> {:a [[:a 1 2] [:a 3 4] [:a 5 6]], :b [[:b \a \b] [:b \c \d] [:b \e \f]]}
(defn build-annotations [coll]
(reduce (fn [m [k & vs]]
(assoc m k (conj (m k []) (vec vs))))
{} coll))
Concerning your code, the most significant problem is naming. Firstly, I wouldn't, especially without first understanding your code, have any idea what is meant by annotation
, gff
, and seqname
. current
is pretty ambiguous too. In Clojure, remaining
would generally be called more
, depending on the context, and whether a more specific name should be used.
Within your let statement, gff (first annotation)
remaining (rest annotation)
, I'd probably take advantage of destructuring, like this:
(let [[first & more] annotation] ...)
If you would rather use (rest annotation)
then I'd suggest using next
instead, as it will return nil
if it's empty, and allow you to write (if-not remaining ...)
rather than (if-not (seq remaining) ...)
.
user> (next [])
nil
user> (rest [])
()
In Clojure, unlike other lisps, the empty list is truthy.
This article shows the standard for idiomatic naming.
Works at least on the given data set.
(defn build-annotations [coll]
(reduce
(fn [result vec]
(let [key (first vec)
val (subvec vec 1)
old-val (get result key [])
conjoined-val (conj old-val val)]
(assoc
result
key
conjoined-val)))
{}
coll))
(build-annotations [[:a 1 2] [:a 3 4] [:a 5 6] [:b \a \b] [:b \c \d] [:b \e \f]])
I am sorry for not offering improvements on your code. I am just learning Clojure and it is easier to solve problems piece by piece instead of understanding a bigger piece of code and finding the problems in it.
Although I have no comments to your code yet, I tried it for my own and came up with this solution:
(defn build-annotations [coll]
(let [anmap (group-by first coll)]
(zipmap (keys anmap) (map #(vec (map (comp vec rest) %)) (vals anmap)))))
Here's my entry leveraging group-by, although several steps in here are really concerned with returning vectors rather than lists. If you drop that requirement, it gets a bit simpler:
(defn f [s]
(let [g (group-by first s)
k (keys g)
v (vals g)
cleaned-v (for [group v]
(into [] (map (comp #(into [] %) rest) group)))]
(zipmap k cleaned-v)))
Depending what you actually want, you might even be able to get by with just doing group-by.
(defn build-annotations [coll]
(apply merge-with concat
(map (fn [[k & vals]] {k [vals]})
coll))
So,
(map (fn [[k & vals]] {k [vals]})
coll))
takes a collection of [keys & values] and returns a list of {key [values]}
(apply merge-with concat ...list of maps...)
takes a list of maps, merges them together, and concats the values if a key already exists.
精彩评论