I am using the tm package to compute term-document-matrix for a dataset, I now have to write the term-document-matrix to a file but when I use the write functions in R I am getting a error.
Here is the code which I am using and the error I am getting:
data("crude")
tdm <- TermDocumentMatrix(crude, control = list(weighting = 开发者_如何学编程weightTfIdf, stopwords = TRUE))
dtm <- DocumentTermMatrix(crude, control = list(weighting = weightTfIdf, stopwords = TRUE))
and this is the error while I use the write.table command on this data:
Error in cat(list(...), file, sep, fill, labels, append) : argument 1 (type 'list') cannot be handled by 'cat'
I understand that tbm is a object of type Simple Triplet Matrix, but how can I write this to a simple text file.
I think I might be misunderstanding the question, but if all you want to do is export the term document matrix to a file, then how about this:
m <- inspect(tdm)
DF <- as.data.frame(m, stringsAsFactors = FALSE)
write.table(DF)
Is that what you're after mate?
Hope that helps a little,
Tony Breyal
Should the file be "human-readable"? If not, use dump
, dput
, or save
. If so, convert your list into a data.frame.
Edit: You can convert your list into a matrix if each list element is equal length by doing matrix(unlist(list.name), nrow=length(list.name[[1]]))
or something like that (or with plyr
).
Why aren't you doing your SVM analysis in R (e.g. with kernlab)?
Edit 2: Ok, I looked at your data, and it isn't easy to convert into a matrix because the list elements aren't equal length:
> is.list(tdm)
[1] TRUE
> str(tdm)
List of 7
$ i : int [1:1475] 15 29 151 152 173 205 215 216 227 228 ...
$ j : int [1:1475] 1 1 1 1 1 1 1 1 1 1 ...
$ v : Named num [1:1475] 3.32 4.32 2.32 2 2.32 ...
..- attr(*, "names")= chr [1:1475] "1.50" "16.00" "barrel," "barrel." ...
$ nrow : int 985
$ ncol : int 20
$ dimnames :List of 2
..$ Terms: chr [1:985] "(bpd)" "(bpd)." "(gcc)" "(it) appears to be nearing a crossroads with regard to\nderegulation, both as it pertains to investments and imports," ...
..$ Docs : chr [1:20] "127" "144" "191" "194" ...
$ Weighting: chr [1:2] "term frequency - inverse document frequency" "tf-idf"
- attr(*, "class")= chr [1:2] "TermDocumentMatrix" "simple_triplet_matrix"
In order to convert this to a matrix, you will need to either take elements of this list (e.g. i, j) or else do some other manipulation.
Edit 3: Just to conclude my commentary here: these objects are intended to be used with the inspect
function (see the package vignette).
As discussed, in order to use a function like write.table
, you will need to convert your list into a matrix, which requires some manipulation of that list such that you have several vectors of equal length. Looking at the structure of these tm
objects: this will be very difficult to do, and I suggest you work with the helper functions that are included with that package.
dtmMatrix <- as.matrix(dtm)
write.csv(dtmMatrix, 'mydata.csv')
This certainly does the work. However, when I tried it on a very large DTM (25000 by 35000), it gave errors relating to lack of memory space.
I used the following method:
dtm <- DocumentTermMatrix(corpus)
dtm1 <- removeSparseTerms(dtm,0.998) ##max allowed sparsity 0.998
m <- inspect(dtm1)
DF <- as.data.frame(m, stringsAsFactors = FALSE)
write.csv(DF,"mydata0.998sparse.csv")
Which reduced the size of the document term matrix to a great extent! Here you can increase the max allowable sparsity (closer to 1) to include more terms in DF.
精彩评论