I need to store a series of data-points in the form of (name, value), where the value could take different types.
I am trying to use a class template for each data-point. Then for each data-point I see, I want to create a new object and push it back into a vector. For each new type, I need to create a new class from the template first. But I can not store the objects created in any vector, since vectors expect the same type for all entries. The types I need to store can not be fitted in a inheritance hierarchy. They are unrelated. Also there can be more types created in future, and I do not want to change the storage service for each new type. Is there a way to create a heterogeneous container to store these entries? Thank you开发者_如何学Python!
C++17 and later.
std::any
allows to hold any type, although it requires knowing the type that was stored to retrieve it.
If you have a set of known types, however, you may prefer std::variant
:
using variant_type = std::variant<Foo, Bar, Joe>;
int func(variant_type const& v) // not template
{
auto const visitor = [](auto const& t)
{
if constexpr (std::is_same_v<Foo const&, decltype(t)>)
{
return t.fooish();
}
else
{
return t.barjoeish();
}
};
return std::visit(visitor, v);
}
A useful trick for quickly defining visitors:
template <typename... Ts> struct overload : Ts...
{
overload(Ts... aFns) : Ts(aFns)... {}
using Ts::operator()...;
};
template <typename... Ts> overload(Ts...) -> overload<Ts...>;
// Used as
auto const visitor = overload(
[](Foo const& foo) { return foo.fooish(); },
[](auto const& other) { return other.joebarish(); }
);
return std::visit(visitor, variant);
Pre-C++17.
boost::any
has already been recommended, however it's for anything, so you can't expect much from it.
If you know the various types ahead of time, you're better using boost::variant
.
typedef boost::variant<Foo, Bar, Joe> variant_type;
struct Print: boost::static_visitor<>
{
void operator()(Foo const& f) const { f.print(std::cout); }
template <class T>
void operator()(T const& t) const { std::cout << t << '\n'; }
};
void func(variant_type const& v) // not template
{
boost::apply_visitor(Print(), v); // compile-time checking
// that all types are handled
}
The boost library has probably what you're looking for (boost::any). You can roll your own using a wrapped pointer approach if you cannot use boost...
The problem with containers like this is that when you want to access something in the container, you have to determine its type and then cast it to the actual type somehow. This is ugly, inefficient and error-prone, which is why the #1 choice in C++ is to use inheritance, unless you have a very good reason not to - something I've never actually come across in my C++ career.
I was thinking that you could just have a Pair(type, void*) and write your own pop function that casts the void* depending upon the type describe in the pair and then shove these into whatever container catches your eye.
精彩评论