Say I've a Python 2D list as below:
my_list = [ [1,2,3,4],
[2,4,5,6] ]
I can get the row totals with a list comprehension:
r开发者_开发问答ow_totals = [ sum(x) for x in my_list ]
Can I get the column totals without a double for
loop? Ie, to get this list:
[3,6,8,10]
Use zip
col_totals = [ sum(x) for x in zip(*my_list) ]
>>> map(sum,zip(*my_list))
[3, 6, 8, 10]
Or the itertools equivalent
>>> from itertools import imap, izip
>>> imap(sum,izip(*my_list))
<itertools.imap object at 0x00D20370>
>>> list(_)
[3, 6, 8, 10]
Solution map(sum,zip(*my_list))
is the fastest.
However, if you need to keep the list, [x + y for x, y in zip(*my_list)]
is the fastest.
The test was conducted in Python 3.1.2 64 bit.
>>> import timeit
>>> my_list = [[1, 2, 3, 4], [2, 4, 5, 6]]
>>> t1 = lambda: [sum(x) for x in zip(*my_list)]
>>> timeit.timeit(t1)
2.5090877081503606
>>> t2 = lambda: map(sum,zip(*my_list))
>>> timeit.timeit(t2)
0.9024796603792709
>>> t3 = lambda: list(map(sum,zip(*my_list)))
>>> timeit.timeit(t3)
3.4918002495520284
>>> t4 = lambda: [x + y for x, y in zip(*my_list)]
>>> timeit.timeit(t4)
1.7795929868792655
[x + y for x, y in zip(*my_list)]
Use NumPy and transpose
import numpy as np
my_list = np.array([[1,2,3,4],[2,4,5,6]])
[ sum(x) for x in my_list.transpose() ]
Out[*]: [3, 6, 8, 10]
Or, simpler:
my_list.sum(axis = 0)
精彩评论