Consider the following template class
class MyClassInterface {
public:
virtual double foo(double) = 0;
}
class MyClass<int P1, int P2, int P3>
: public MyClassInterface {
public:
double foo(double a) {
// complex computation dependent on P1, P2, P3
}
// more methods and fields (dependent on P1, P2, P3)
}
The template parameters P1
, P2
, P3
are in a restricted range l开发者_如何学Cike from 0
to some fixed value n
fixed at compile time.
Now I would like to build a "factory" method like
MyClassInterface* Factor(int p1, int p2, int p3) {
return new MyClass<p1,p2,p3>(); // <- how to do this?
}
The question would be how to achieve the construction of the template class when template parameters are only known at runtime. And would the same be possible with template parameters having a very large domain (like a double)? Please consider also, if the possible solution is extendable to using more template parameters.
Here's what you can do:
MyClassInterface* Factor(int p1, int p2, int p3) {
if (p1 == 0 && p2 == 0 && p3 == 0)
return new MyClass<0,0,0>();
if (p1 == 0 && p2 == 0 && p3 == 1)
return new MyClass<0,0,1>();
etc;
}
Note that this does not even remotely scale to floating point values. It scales only to a known list of discrete values.
I've also used this bit of code before to do some template automatic generation:
#include <boost/preprocessor.hpp>
#define RANGE ((0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12))
#define MACRO(r, p) \
if (BOOST_PP_SEQ_ELEM(0, p) == var1 && BOOST_PP_SEQ_ELEM(1, p) == var2 && BOOST_PP_SEQ_ELEM(2, p) == var3 && BOOST_PP_SEQ_ELEM(3, p) == var4) \
actual_foo = foo<BOOST_PP_TUPLE_REM_CTOR(4, BOOST_PP_SEQ_TO_TUPLE(p))>;
BOOST_PP_SEQ_FOR_EACH_PRODUCT(MACRO, RANGE RANGE RANGE RANGE)
#undef MACRO
#undef RANGE
The compiler produces output that looks like this:
if (0 == var1 && 0 == var2 && 0 == var3 && 0 == var4) actual_foo = foo<0, 0, 0, 0>;
if (0 == var1 && 0 == var2 && 0 == var3 && 1 == var4) actual_foo = foo<0, 0, 0, 1>;
if (0 == var1 && 0 == var2 && 0 == var3 && 2 == var4) actual_foo = foo<0, 0, 0, 2>;
if (0 == var1 && 0 == var2 && 0 == var3 && 3 == var4) actual_foo = foo<0, 0, 0, 3>;
if (0 == var1 && 0 == var2 && 0 == var3 && 4 == var4) actual_foo = foo<0, 0, 0, 4>;
if (0 == var1 && 0 == var2 && 0 == var3 && 5 == var4) actual_foo = foo<0, 0, 0, 5>;
if (0 == var1 && 0 == var2 && 0 == var3 && 6 == var4) actual_foo = foo<0, 0, 0, 6>;
if (0 == var1 && 0 == var2 && 0 == var3 && 7 == var4) actual_foo = foo<0, 0, 0, 7>;
if (0 == var1 && 0 == var2 && 0 == var3 && 8 == var4) actual_foo = foo<0, 0, 0, 8>;
etc...
Also, please note that with this method, with 4 variables, each ranging over 13 values, You would cause the compiler to instantiate 28561 copies of this function. If your n was 50, and you still had 4 options, you would have 6250000 functions instantiated. This can make for a SLOW compile.
If macros aren't your thing then you can also generate the if-then-else's using templates:
#include <stdexcept>
#include <iostream>
const unsigned int END_VAL = 10;
class MyClassInterface
{
public:
virtual double foo (double) = 0;
};
template<int P1, int P2, int P3>
class MyClass : public MyClassInterface
{
public:
double foo (double a)
{
return P1 * 100 + P2 * 10 + P3 + a;
}
};
struct ThrowError
{
static inline MyClassInterface* create (int c1, int c2, int c3)
{
throw std::runtime_error ("Could not create MyClass");
}
};
template<int DEPTH = 0, int N1 = 0, int N2 = 0, int N3 = 0>
struct Factory : ThrowError {};
template<int N2, int N3>
struct Factory<0, END_VAL, N2, N3> : ThrowError {};
template<int N1, int N3>
struct Factory<1, N1, END_VAL, N3> : ThrowError {};
template<int N1, int N2>
struct Factory<2, N1, N2, END_VAL> : ThrowError {};
template<int N1, int N2, int N3>
struct Factory<0, N1, N2, N3>
{
static inline MyClassInterface* create (int c1, int c2, int c3)
{
if (c1 == N1)
return Factory<1, N1, 0, 0>::create (c1, c2, c3);
else
return Factory<0, N1 + 1, N2, N3>::create (c1, c2, c3);
}
};
template<int N1, int N2, int N3>
struct Factory<1, N1, N2, N3>
{
static inline MyClassInterface* create (int c1, int c2, int c3)
{
if (c2 == N2)
return Factory<2, N1, N2, 0>::create (c1, c2, c3);
else
return Factory<1, N1, N2 + 1, N3>::create (c1, c2, c3);
}
};
template<int N1, int N2, int N3>
struct Factory<2, N1, N2, N3>
{
static inline MyClassInterface* create (int c1, int c2, int c3)
{
if (c3 == N3)
return new MyClass<N1, N2, N3> ();
else
return Factory<2, N1, N2, N3 + 1>::create (c1, c2, c3);
}
};
MyClassInterface* factory (int c1, int c2, int c3)
{
return Factory<>::create (c1, c2, c3);
}
Since the tests are nested it should be more efficient than sharth's macro solution.
You can extend it to more parameters by adding more depth cases.
Thats not posible, templates are instantiated at compile time.
By the time you have an executable you only have classes(particular instantiations of those templates), no templates any more.
If you don't know values at compile time you can't have templates for those.
I don't know if this is applicable to your current problem, but it would appear that C++11
constexpr
may be what you are looking for - constexpr
functions may be called during runtime and at the same time may be executed at compile time.
The use of constexpr
also has the added benefits of being far "cleaner" looking than using TMP, working with any runtime values (not just integral values) whilst retaining most of TMP's benefits such as memoization and compile time execution, although this is somewhat given to the compiler's decision. In fact, constexpr
is usually much faster than a TMP equivalent version.
Note also that in general the use of templates during runtime would undermine one of template's greatest features - The fact that they are handled during compile time and pretty much disappear during runtime.
It is technically *possible** - but it's not practical and it's almost certainly the wrong way to approach the problem.
Is there some reason why P1, P2 and P3 can't be regular integer variables?
*You could embed a C++ compiler and a copy of your source, then compile a dynamic library or shared object that implements your factory function for a given set of P1,P2,P3 - but do you really want to do that? IMO, that's an absolutely crazy thing to be doing.
You can't. template are compile time only.
You can build at compile time all the possible templates values you want, and choose one of them in run time.
way too late, i know, but what about this:
// MSVC++ 2010 SP1 x86
// boost 1.53
#include <tuple>
#include <memory>
// test
#include <iostream>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/mpl/size.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/push_back.hpp>
#include <boost/mpl/pair.hpp>
#include <boost/mpl/begin.hpp>
#include <boost/mpl/deref.hpp>
#include <boost/mpl/int.hpp>
#include <boost/mpl/placeholders.hpp>
#include <boost/mpl/unpack_args.hpp>
#include <boost/mpl/apply.hpp>
// test
#include <boost/range/algorithm/for_each.hpp>
/*! \internal
*/
namespace detail
{
/*! \internal
*/
namespace runtime_template
{
/*! \internal
fwd
*/
template <
typename Template
, typename Types
, typename Map // top level map iterator
, typename LastMap // top level map iterator
, int Index
, bool Done = std::is_same<Map, LastMap>::value
>
struct apply_recursive_t;
/*! \internal
fwd
*/
template <
typename Template
, typename Types
, typename Map // top level map iterator
, typename LastMap // top level map iterator
, typename First
, typename Last
, int Index
, bool Enable = !std::is_same<First, Last>::value
>
struct apply_mapping_recursive_t;
/*! \internal
run time compare key values + compile time push_back on \a Types
*/
template <
typename Template
, typename Types
, typename Map // top level map iterator
, typename LastMap // top level map iterator
, typename First
, typename Last
, int Index // current argument
, bool Enable /* = !std::is_same<First, Last>::value */
>
struct apply_mapping_recursive_t
{
typedef void result_type;
template <typename TypeIds, typename T>
inline static void apply(const TypeIds& typeIds, T&& t)
{ namespace mpl = boost::mpl;
typedef typename mpl::deref<First>::type key_value_pair;
typedef typename mpl::first<key_value_pair>::type typeId; // mpl::int
if (typeId::value == std::get<Index>(typeIds))
{
apply_recursive_t<
Template
, typename mpl::push_back<
Types
, typename mpl::second<key_value_pair>::type
>::type
, typename mpl::next<Map>::type
, LastMap
, Index + 1
>::apply(typeIds, std::forward<T>(t));
}
else
{
apply_mapping_recursive_t<
Template
, Types
, Map
, LastMap
, typename mpl::next<First>::type
, Last
, Index
>::apply(typeIds, std::forward<T>(t));
}
}
};
/*! \internal
mapping not found
\note should never be invoked, but must compile
*/
template <
typename Template
, typename Types
, typename Map // top level map iterator
, typename LastMap // top level map iterator
, typename First
, typename Last
, int Index
>
struct apply_mapping_recursive_t<
Template
, Types
, Map
, LastMap
, First
, Last
, Index
, false
>
{
typedef void result_type;
template <typename TypeIds, typename T>
inline static void apply(const TypeIds& /* typeIds */, T&& /* t */)
{
BOOST_ASSERT(false);
}
};
/*! \internal
push_back on \a Types template types recursively
*/
template <
typename Template
, typename Types
, typename Map // top level map iterator
, typename LastMap // top level map iterator
, int Index
, bool Done /* = std::is_same<Map, LastMap>::value */
>
struct apply_recursive_t
{
typedef void result_type;
template <typename TypeIds, typename T>
inline static void apply(const TypeIds& typeIds, T&& t)
{ namespace mpl = boost::mpl;
typedef typename mpl::deref<Map>::type Mapping; // [key;type] pair vector
apply_mapping_recursive_t<
Template
, Types
, Map
, LastMap
, typename mpl::begin<Mapping>::type
, typename mpl::end<Mapping>::type
, Index
>::apply(typeIds, std::forward<T>(t));
}
};
/*! \internal
done! replace mpl placeholders of \a Template with the now complete \a Types
and invoke result
*/
template <
typename Template
, typename Types
, typename Map
, typename LastMap
, int Index
>
struct apply_recursive_t<
Template
, Types
, Map
, LastMap
, Index
, true
>
{
typedef void result_type;
template <typename TypeIds, typename T>
inline static void apply(const TypeIds& /* typeIds */, T&& t)
{ namespace mpl = boost::mpl;
typename mpl::apply<
mpl::unpack_args<Template>
, Types
>::type()(std::forward<T>(t));
}
};
/*! \internal
helper functor to be used with invoke_runtime_template()
\note cool: mpl::apply works with nested placeholders types!
*/
template <typename Template>
struct make_runtime_template_t
{
typedef void result_type;
template <typename Base>
inline void operator()(std::unique_ptr<Base>* base) const
{
base->reset(new Template());
}
};
} // namespace runtime_template
} // namespace detail
/*! \brief runtime template parameter selection
\param Template functor<_, ...> placeholder expression
\param Maps mpl::vector<mpl::vector<mpl::pair<int, type>, ...>, ...>
\param Types std::tuple<int, ...> type ids
\param T functor argument type
\note all permutations must be compilable (they will be compiled of course)
\note compile time: O(n!) run time: O(n)
\sa invoke_runtime_template()
\author slow
*/
template <
typename Template
, typename Map
, typename Types
, typename T
>
inline void invoke_runtime_template(const Types& types, T&& t)
{ namespace mpl = boost::mpl;
BOOST_STATIC_ASSERT(mpl::size<Map>::value == std::tuple_size<Types>::value);
detail::runtime_template::apply_recursive_t<
Template
, mpl::vector<>
, typename mpl::begin<Map>::type
, typename mpl::end<Map>::type
, 0
>::apply(types, std::forward<T>(t));
}
/*! \sa invoke_runtime_template()
*/
template <
typename Template
, typename Map
, typename Base
, typename Types
>
inline void make_runtime_template(const Types& types, std::unique_ptr<Base>* base)
{
invoke_runtime_template<
detail::runtime_template::make_runtime_template_t<Template>
, Map
>(types, base);
}
/*! \overload
*/
template <
typename Base
, typename Template
, typename Map
, typename Types
>
inline std::unique_ptr<Base> make_runtime_template(const Types& types)
{
std::unique_ptr<Base> result;
make_runtime_template<Template, Map>(types, &result);
return result;
}
////////////////////////////////////////////////////////////////////////////////
namespace mpl = boost::mpl;
using mpl::_;
class MyClassInterface {
public:
virtual ~MyClassInterface() {}
virtual double foo(double) = 0;
};
template <int P1, int P2, int P3>
class MyClass
: public MyClassInterface {
public:
double foo(double /*a*/) {
// complex computation dependent on P1, P2, P3
std::wcout << typeid(MyClass<P1, P2, P3>).name() << std::endl;
return 42.0;
}
// more methods and fields (dependent on P1, P2, P3)
};
// wrapper for transforming types (mpl::int) to values
template <typename P1, typename P2, typename P3>
struct MyFactory
{
inline void operator()(std::unique_ptr<MyClassInterface>* result) const
{
result->reset(new MyClass<P1::value, P2::value, P3::value>());
}
};
template <int I>
struct MyConstant
: boost::mpl::pair<
boost::mpl::int_<I>
, boost::mpl::int_<I>
> {};
std::unique_ptr<MyClassInterface> Factor(const std::tuple<int, int, int>& constants) {
typedef mpl::vector<
MyConstant<0>
, MyConstant<1>
, MyConstant<2>
, MyConstant<3>
// ...
> MyRange;
std::unique_ptr<MyClassInterface> result;
invoke_runtime_template<
MyFactory<_, _, _>
, mpl::vector<MyRange, MyRange, MyRange>
>(constants, &result);
return result;
}
int main(int /*argc*/, char* /*argv*/[])
{
typedef std::tuple<int, int, int> Tuple;
const Tuple Permutations[] =
{
std::make_tuple(0, 0, 0)
, std::make_tuple(0, 0, 1)
, std::make_tuple(0, 1, 0)
, std::make_tuple(0, 1, 1)
, std::make_tuple(1, 0, 0)
, std::make_tuple(1, 2, 3)
, std::make_tuple(1, 1, 0)
, std::make_tuple(1, 1, 1)
// ...
};
boost::for_each(Permutations, [](const Tuple& constants) { Factor(constants)->foo(42.0); });
return 0;
}
精彩评论