In C++ I wanted to define a constant that I can use in another function, A short answer on how to do this will be fine..
Lets say at the beginning of my code I want to define this constant:
//After #includes
bool OS = 1; //1 = linux
if (OS) {
const ??? = "clear";
} else {
const ??? = "cls";
}
I don't know what type to use to define the "clear" string... I'm so confused.
Later on I want to use it within a function:
int foo() {
system(::cls); //:: for global
return 0;
}
How would I define the string up top, and use the string d开发者_Python百科own below? I heard char only had one character and things... I'm not sure how to use , since it says it's converting string into const char or something.
char*
isn't quite a char
. char*
is basically a string (it's what strings were before C++ came along).
For illustration:
int array[N]; // An array of N ints.
char str[N]; // An array of N chars, which is also (loosely) called a string.
char[]
degrades to char*
, so you'll often see functions take a char*
.
To convert std::string
to const char*
, you can simply call:
std::string s;
s.c_str()
In this case, it's common to use the preprocessor to define your OS. This way you can use the compiler to do the platform specific stuff:
#ifdef OS_LINUX
const char cls[] = "clear";
#elif OS_WIN
const char cls[] = "cls";
#endif
One thing you may want to consider is making it a function. This avoids nasty dependencies of global construction order.
string GetClearCommand() {
if (OS == "LINUX") {
return "clear";
} else if (OS == "WIN") {
return "cls";
}
FAIL("No OS specified?");
return "";
}
What it looks like you're trying to do is this:
#include <iostream>
using namespace std;
#ifdef LINUX
const char cls[] = "LINUX_CLEAR";
#elif WIN
const char cls[] = "WIN_CLEAR";
#else
const char cls[] = "OTHER_CLEAR";
#endif
void fake_system(const char* arg) {
std::cout << "fake_system: " << arg << std::endl;
}
int main(int argc, char** argv) {
fake_system(cls);
return 0;
}
// Then build the program passing your OS parameter.
$ g++ -DLINUX clear.cc -o clear
$ ./clear
fake_system: LINUX_CLEAR
Here's the problem, you're suffering from going out of scope with the variables. If I declare something within brackets, it only exists within the brackets.
if( foo ){
const char* blah = "blah";
}
Once we leave the if
statement, the variable blah
disappears. You'll need to instantiate it non-locally to whatever brackets you write. Hence:
void Bar(){
const char* blah = "blah";
if( foo ){
//blah exists within here
}
}
However, blah
will not exist outside of Bar
. Get it?
Yet another option is to create a class with a bunch of static methods. Create a new method for each command. Something like:
// in sys-commands.h
class SystemCommands {
public:
static char const* clear();
static char const* remove();
};
This gives you a few nice options for the implementation. The nicest one is to have a separate implementation file for each platform that you select during compile time.
// in sys-commands-win32.cpp
#include "sys-commands.h"
char const* SystemCommands::clear() { return "cls"; }
char const* SystemCommands::remove() { return "erase /f/q"; }
// in sys-commands-macosx.cpp
#include "sys-commands.h"
char const* SystemCommands::clear() { return "/usr/bin/clear"; }
char const* SystemCommands::remove() { return "/bin/rm -fr"; }
Which file gets compiled will determine which command set will be used. Your application code will look like:
#include <cstdlib>
#include "sys-commands.h"
int main() {
std::system(SystemCommands::clear());
return 0;
}
Edit: I forgot to mention that I prefer static functions to global constants for a bunch of reasons. If nothing else, you can make them non-constant without changing their types - in other words, if you ever have to select the command set based on runtime settings, the user code does not have to change or even be aware that such a change occurred.
You can use a common header file and link to different modules depending on the systen:
// systemconstants.hpp
#ifndef SYSTEM_CONSTANTS_HPP_INCLUDED
#define SYSTEM_CONSTANTS_HPP_INCLUDED
namespace constants {
extern const char cls[]; // declaration of cls with incomplete type
}
#endif
In case of Linux, just compile and link to this one:
// linux/systemconstants.cpp
#include "systemconstants.hpp"
namespace constants {
extern const char cls[] = "clear";
}
In case of Windows, just compile and link to this one:
// windows/systemconstants.cpp
#include "systemconstants.hpp"
namespace constants {
extern const char cls[] = "cls";
}
System-specific translation units could be placed in specific subdirectories (linux/, windows/, etc) of which one could be automatically selected during the build process. This extends to many other things, not just string constants.
精彩评论