Can I retrieve a Method via reflection, somehow combine it with a target object, and return it as something that looks like a function in Scala (i.e. you can call it using parenthesis)? The argument list is variable. It doesn't have to be a "first-class" function (I've updated the question), just a syntactic-looking function call, e.g. f(args).
My attempt so far looks something like this (which technically is pseudo-code, just to avoid cluttering up the post with additional definitions):
class method_ref(o: AnyRef, m: java.lang.reflect.Method) { def apply(args: Any*): some_return_type = { var oa: Array[Object] = args.toArray.map { _.asInstanceOf[Object] } println("calling: " + m.toString + " with: " + oa.length) m.invoke(o, oa: _*) match { case x: some_return_type => x; case u => throw new Exception("unknown result" + u); } } }
With the above I was able to get past the compiler errors, but now I have a run-time exception:
Caused by: java.lang.IllegalArgumentException: argument type mismatch
The example usage is something like:
var f = ... some expression returning method_ref ...; ... var y = f(x) // looks like a function, doesn'开发者_C百科t it?
UPDATE
Changing the args:Any* to args:AnyRef* actually fixed my run-time problem, so the above approach (with the fix) works fine for what I was trying to accomplish. I think I ran into a more general issue with varargs here.
Sure. Here's some code I wrote that add an interface to a function. It's not exactly what you want, but I think it can be adapted with few changes. The most difficult change is on invoke
, where you'll need to change the invoked method by the one obtained through reflection. Also, you'll have to take care that the received method you are processing is apply
. Also, instead of f
, you'd use the target object. It should probably look something like this:
def invoke(proxy: AnyRef, method: Method, args: Array[AnyRef]) = method match {
case m if /* m is apply */ => target.getClass().getMethod("name", /* parameter type */).invoke(target, args: _*)
case _ => /* ??? */
}
Anyway, here's the code:
import java.lang.reflect.{Proxy, InvocationHandler, Method}
class Handler[T, R](f: Function1[T, R])(implicit fm: Manifest[Function1[T, R]]) extends InvocationHandler {
def invoke(proxy: AnyRef, method: Method, args: Array[AnyRef]) = method.invoke(f, args: _*)
def withInterface[I](implicit m: Manifest[I]) = {
require(m <:< manifest[Function1[T, R]] && m.erasure.isInterface)
Proxy.newProxyInstance(m.erasure.getClassLoader(), Array(m.erasure), this).asInstanceOf[I]
}
}
object Handler {
def apply[T, R](f: Function1[T, R])(implicit fm: Manifest[Function1[T, R]]) = new Handler(f)
}
And use it like this:
trait CostFunction extends Function1[String, Int]
Handler { x: String => x.length } withInterface manifest[CostFunction]
The use of "manifest" there helps with syntax. You could write it like this:
Handler({ x: String => x.length }).withInterface[CostFunction] // or
Handler((_: String).length).withInterface[CostFunction]
One could also drop the manifest and use classOf instead with a few changes.
If you're not looking for a generic invoke
that takes the method name--but rather, you want to capture a particular method on a particular object--and you don't want to get too deeply into manifests and such, I think the following is a decent solution:
class MethodFunc[T <: AnyRef](o: Object, m: reflect.Method, tc: Class[T]) {
def apply(oa: Any*): T = {
val result = m.invoke(o, oa.map(_.asInstanceOf[AnyRef]): _*)
if (result.getClass == tc) result.asInstanceOf[T]
else throw new IllegalArgumentException("Unexpected result " + result)
}
}
Let's see it in action:
val s = "Hi there, friend"
val m = s.getClass.getMethods.find(m => {
m.getName == "substring" && m.getParameterTypes.length == 2
}).get
val mf = new MethodFunc(s,m,classOf[String])
scala> mf(3,8)
res10: String = there
The tricky part is getting the correct type for the return value. Here it's left up to you to supply it. For example,if you supply classOf[CharSequence]
it will fail because it's not the right class. (Manifests are better for this, but you did ask for simple...though I think "simple to use" is generally better than "simple to code the functionality".)
精彩评论